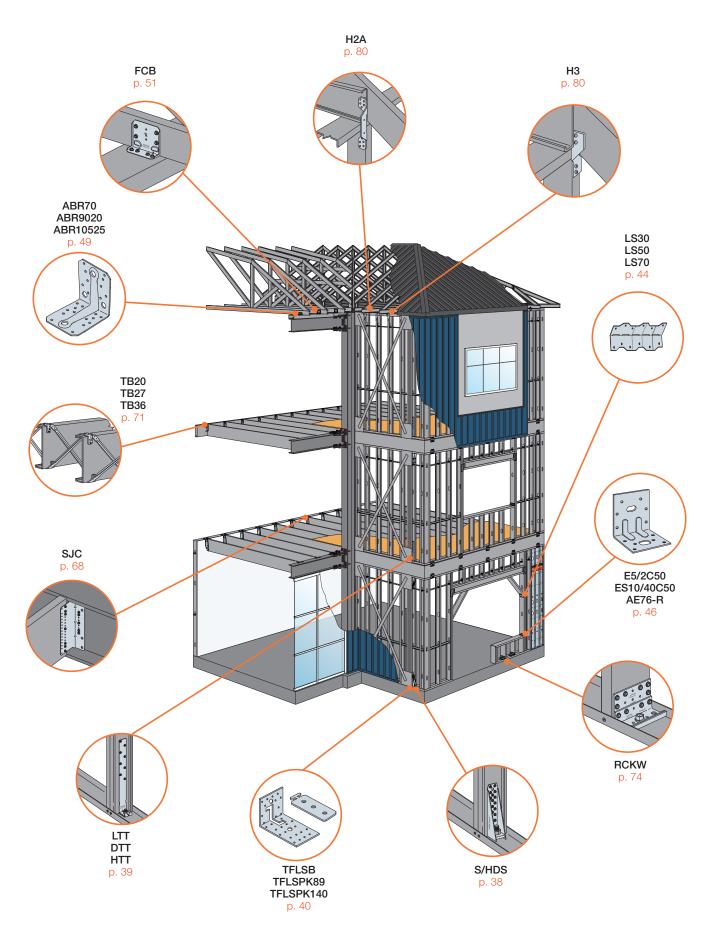

Connectors and Fasteners for Light Gauge Steel C-LGS-UK-2021 | +44 (0) 1827 255 600 | strongtie.co.uk



Facade and load bearing connector solutions

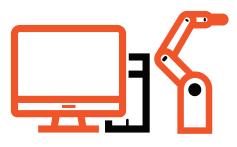
Facade and load bearing connector solutions

Strength Beyond Steel

CE & Guarantees

Our products are engineered to stand the test of time. So are our relationships.

For over 60 years, Simpson Strong-Tie[®] has focused on creating connectors that perform under the toughest of conditions, helping you build safer, stronger homes and structures. With more than 1,000 product solutions, we're proud to offer the widest connector range in Europe.


All of our products meet the Construction Products Regulations and those that are required to achieve CE Marking are tested to guarantee that they comply.

Technical Support

Our Technical Support team is on hand to answer your questions and provide some sound installation advice, from making sure you have the most suitable product, to the best ways to go about installing them.

Design & Manufacture

We regularly work with house builders and designers to develop our range of structural connector solutions, considering every aspect of their use to meet your ever-changing needs.

Ease of installation, performance characteristics and life-span are the fundamental principles that make up our design DNA.

Stock & Delivery

We maintain 200 different product families spanning over 5,000 product lines. We will continue supporting them for as long as you need them.

From our distribution centres in Tamworth and Dublin, we do everything we can to make sure you get your delivery in full - to your premises or direct to site.

Research & Development

We continuously invest in research and product development to ensure that our product solutions are efficient, easy to use and meet the needs of construction professionals.

Our Technical team design, develop and test new product solutions.

Plans & Drawings

We know that architects, designers, and contractors need very detailed technical information about our products, so we provide drawings and technical information free on our website.

These include CAD and BIM drawings, as well as DWG 2D and 3D, SAT files and performance data sheets.

Software

We offer free software solutions to help you choose the right connector or fixing. Connector Selector enables you to quickly and easily identify the connectors or fastenings you will need, based on your dimensions, purpose and performance requirements.

Anchor Designer offers a quick calculation for anchor fixings into cracked and non cracked concrete.

Marketing Support

Our in-house marketing team is on hand to provide a wide range of product images and resources for you to use in-store or online, including catalogues, posters, displays and promotions, product data, product installation and feature videos.

Custom Manufacturing

Every construction project comes with its own set of challenges, sometimes unexpected and quite often unique.

Our engineering and production teams provide a design and manufacture service for 'one off' connectors, based on plans provided by you.

Your unique connector is produced using state-of-the-art equipment and is ready to send often within one working day.

Quality Testing

We build quality and innovation into everything we make and everything we do.

Made using the best quality steels, all of our "No Equal" products and connectors undergo rigorous quality testing, to ensure that they meet safety regulations, and exceed our customers' needs and expectations. Contact Us

This is our 'No Equal' commitment. The difference between us and everybody else.

Y f (a) (in **>** www.strongtie.co.uk

Project: Oadby Plastics Extension Location: Leicester Manufactured by EOS Framing Ltd. 5

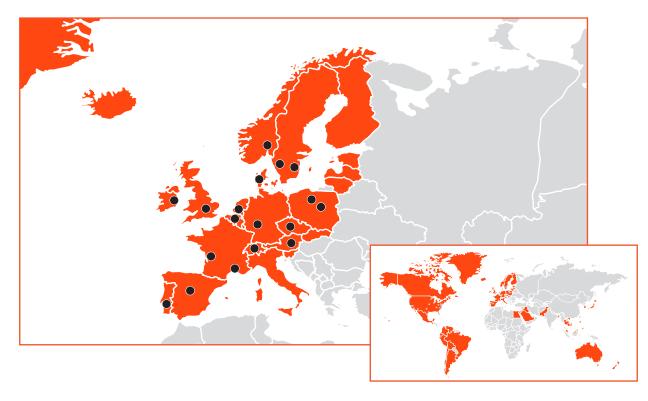
Simpson Strong-Tie® Connectors for Light Gauge Steel Construction

For more than 60 years, Simpson Strong-Tie has focused on creating structural products that help people build safer and stronger homes and buildings. A leader in structural systems research and technology, Simpson Strong-Tie is one of the largest suppliers of structural building products in the world. The Simpson Strong-Tie commitment to product development, engineering, testing and training is evident in the consistent quality and delivery of its products and services.

For more information, visit the company's website at www.strongtie.co.uk.

The 2021 Connectors for Light Gauge Steel Catalogue, brings together a selection of specifically designed and tested products for this sector.

Whether you are a manufacturer of Light Gauge Steel load-bearing structures or a manufacturer of Light Gauge Steel facades, Simpson Strong-Tie can provide a connection solution for your client's building. From the foundation up, we have a comprehensive range of products, which can ensure you make the right connection when you need it. Our range of ergonomically designed connectors can assist on-site installation to ensure projects are completed on time and to your specification. You also have the reassurance of knowing that you are specifying a tested product, whether it be a hold down anchored to the foundation, or an adjustable angle bracket connecting to the Light Gauge Steel, we can provide the connector and the fixings for the solution.



Simpson Strong-Tie[®] Connectors and Fasteners for Light Gauge Steel Structures **Company Information**

For more than 60 years, Simpson Strong-Tie[®] has focused on creating structural products that help people build safer and stronger homes and buildings. A leader in structural systems research and technology, Simpson Strong-Tie[®] is one of the largest suppliers of structural building products in the world. Our commitment to product development and engineering, as well as testing and training, is evident in the consistent quality and delivery of our products and services.

For more information, visit the company's website at strongtie.co.uk

Factories, offices, or warehouses in Australia, Austria, Belgium Canada, Chile, China, Czech Republic, Denmark, France, Germany, Ireland, Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden, Switzerland, Taiwan, UK and USA Distribution in Australia, Canada, Chile, Western Europe, part of Eastern Europe, Middle East, Egypt, Japan, Korea and other Asian countries, Mexico, New Zealand, UK, part of South America and USA

European Manufacturing

Beyond precision engineering and rigorous testing, our European based manufacturing facilities are what enable us to deliver products to the highest industry standard. We invest in - and invent - fabrication technology that can bring our designs to life, and ultimately provide your projects strength, speed and success.

Simpson Strong-Tie® Connectors and Fasteners for Light Gauge Steel Structures

Contents

The Simpson Strong-Tie Company Inc. "No Equal" Pledge Includes:

- Quality products value-engineered for the lowest installed cost at the highest-rated performance levels
- Most thoroughly tested and evaluated products in the industry
- Strategically located manufacturing and warehouse facilities
- National code agency listings

- Largest number of patented connectors in the industry
- European locations with an international sales team
- In-house R&D and tool and die professionals
- In-house product testing and quality control engineers

Quality Policy

We help people build safer structures economically. We do this by designing, engineering and manufacturing "No Equal" structural connectors and other related products that meet or exceed our customers' needs and expectations.

Everyone is responsible for product quality and is committed to ensuring the effectiveness of the Quality Management System. Simpson Strong-Tie® is an ISO 9001 registered company. ISO 9001 is an internationally recognised quality management system standard, which lets our customers know that they can count on the consistent quality of Simpson Strong-Tie's products and services.

Karen Colonias President, Chief Executive Officer

Testing Laboratory Accreditation

The Andris Peterson European Test Laboratory, located in the UK in Tamworth, Staffordshire, is the first manufacturer's facility to achieve third party accreditation to the international standard BS EN ISO/IEC 17025.

The world-class facility now conducts around 10,000 product tests annually and has recently benefited from a significant investment, which will enable a doubling in productivity. We extensively test our products, which gives you the reassurance that they will perform in the toughest conditions and we strive to ensure that our products are compliant with the latest European requirements for construction products.

FM 14704

ISO 9001:2015

Simpson Strong-Tie is an ISO 9001 registered company. ISO 9001 is an internationally recognised quality management system which lets our domestic and international customers know that they can count on the consistent quality of Simpson Strong-Tie® products and services.

EMS 517722

ISO 14001:2015

Our Swedish, French (St. Gemme la Pleine) and UK facilities are ISO 14001 certified. This standard states the requirements for an environmental management system, and applies to the environmental aspects over which our company has control and can be expected to have an influence.

OHS 57006

ISO 45001:2018

Our Tamworth, UK facility is ISO 45001 certified. This certification reflects an internationally applied standard for occupational health and safety management systems.

To learn more about these certifications and organizations, please visit ISO.org.

General Information	8-13	►
Loose Fasteners	15-24	•
Quik Drive Collated Fasteners	25-27	►
Quik Drive Attachments	28-31	►
Chemical Anchor Systems	32-34	•
Fixings For Chemical Anchor Systems	35-36	Þ
Hold Downs and Tension Ties	37-39	►
Levelling Systems	40-41	
Angle Brackets	42-53	►
Over Sail Movement Connectors	54-65	►
Steel Joist Connectors	67-69	►
Bridging Connectors and Ties	70-72	►
Parapet Wall Brackets	73-78	►
High Wind Ties	79-80	►

SIMPSON

Strong-Tie

All rights reserved. This catalogue may not be reproduced in whole or in part without the prior written approval of Simpson Strong-Tie Company Inc.

9

Simpson Strong-Tie® Connectors and Fasteners for Light Gauge Steel Structures Subject Index

General Information

Company Information
Contents
Subject Index10
Alphabetical Index11
Introduction to LGS
Corrosion Information13

Loose Fasteners

Framing Screw - FPHSD 16
Self Drilling Screw - X12 17
Bracket Screw - XLSH
Bracket Screw - X1B
Bracket Screw - XLQ
Self-Drilling Screw - E1B
Self-Drilling Screw - X34
Hex Head Masonry Screw - TTN

Quik Drive Collated Fasteners

Quik Drive Collated Fibre Cement Board
to Steel Screw - CBSDQ
Quik Drive Collated Self-Drilling Screw - X1S27

Quik Drive Attachments

Quik Drive Attachment 51mm - QDPR051E29
Quik Drive Attachment 64mm - QDPRO64E
Quik Drive Attachment 25mm - QDPROHX516G231

Chemical Anchor Systems

Methacrylate Resin - ATHP	.33
---------------------------	-----

Fixings For Chemical Anchor Systems

Threaded Rod - LMAS	;
Resin Dispensing Tool - DT300, 380	;

Hold Downs and Tension Ties

Hold Downs - S/HD8S, S/HD10S	8
Tension Ties - DTT / HTT / LTT	9

Levelling Systems

Levelling System - TFLS

Angle Brackets

Introduction
Skewable Angles - LS
Jack Truss and Rafter Connector - TJC 45
Angle Brackets - ES
Angle Brackets - E5
Angle Brackets - EFIXR47
Angle Brackets - AE
Angle Brackets - ABR
Angle Brackets - E9 / E9S 50
Bypass Frame Fixed Clip Connector - FCB51
Slotted Truss / Joist Clips - STC / DTC53

Over-Sail Movement Connectors

Clip Connectors
Movement Clip Connector - SCB
Bypass Framing Movement Clip Strut Connector - $\textbf{SSB} \dots .57$
Head of Wall Movement Clip Connector - SCW58
Drift Clip Bypass Framing Connector - IDCB
Side Clip Connector - SCHA60
Light Gauge Steel Splicing Clip - LGSSC61
Hybrid Strut - HYS 63

Steel Joist Connectors

Steel Joist Connector - SJC	

Bridging Connectors and Ties

Bridging Connector - HSA, LTB & TB7	1
Party Wall Tie - PWT	2

Parapet Wall Brackets

Parapet Wall Bracket - RCKW	74

High Wind Ties

Alphabetical index

General Information

SIMPSON

Strong-Tie

Angle Brackets - ABR	18
Angle Brackets - AE	18
Angle Brackets - E5	16
Angle Brackets - E9	5C
Angle Brackets - EFIXR	17
Angle Brackets - ES	16

В

A

Bracket Screw - X1B
Bracket Screw - XLQ
Bracket Screw - XLSH
Bridging Connector - HSA, LTB & TB71
Bypass Frame Fixed Clip Connector - FCB51
Bypass Framing Movement Clip Strut Connector - SSB 57

D

Drift Clip Bypass Framing Connector - IDCB 59
F
Framing Screw - FPHSD 16
н
Head of Wall Movement Clip Connector - SCW
Hex Head Masonry Screw - TTN23
High Wind Tie - H2A/H3
Hold Downs - S/HD8S, S/HD10S
Hybrid Strut - HYS 63
J
Jack Truss and Rafter Connector - TJC
L

Levelling System - TFLS	10
Light Gauge Steel Splicing Clip - LGSSC	31

Μ

Methacrylate Resin - ATHP	.30
Movement Clip Connector - SCB	.56

Ρ

Parapet Wall Bracket - RCKW	70
Party Wall Tie - PWT	68

Q

Quik Drive Attachment 25 mm - QDPROHX516G231
Quik Drive Attachment 51 mm - QDPRO51E
Quik Drive Attachment 64 mm - QDPRO64E
Quik Drive Collated Fibre Cement
Board to Steel Screw - CBSDQ26
Quik Drive Collated Self-Drilling Screw - X1S27

R

S

Т

Tension Ties - DTT / HTT / LTT	,
Threaded Rod - LMAS	5

Simpson Strong-Tie® Connectors and Fasteners for Light Gauge Steel Structures

SIMPSON Strong-Tie

Introduction to LGS

Light Gauge Steel

Light gauge steel systems offer a range of construction related benefits, with speed of construction, cost effectiveness and safety being the most notable. Light gauge steel is produced when thin gauge steel coils are uncoiled and cold roll-formed into light gauge steel sections, typically between 1.2mm and 3.2mm gauge. The most popular forms of light gauge steel construction are Facades (infill) and Load Bearing. Facade walls are connected between the primary structural frame of the building to provide support for cladding systems. They do not support floor loads, but do resist wind loads applied to the facade on steel and concrete buildings. Load bearing walls are used in light gauge steel buildings, supporting floor loads, loads from walls above and resisting lateral wind loads. Both internal and external walls may be designed as load bearing. With increased interest in offsite construction methods, light gauge steel systems have become a popular choice for modern methods of construction.

Corrosion Information

The table below provides details of general materials that may be used together in certain instances.

It is sometimes hard to give general statements on certain materials (e.g. Aluminium) as the inclusion of certain ingredients in the alloy (e.g. Copper) has a major impact on the corrosion resistance in the presence of certain electrolytes (e.g. de-icing salt). In addition, the post treatment (e.g. Eloxation) makes a big difference with the corrosion resistance.

Good to know: When low-alloy steels in high moisture atmospheres are in contact even with small carbon steel particles, bimetallic corrosion can cause a nucleus for stainless steel corrosion. This might happen for example when stainless fasteners are processed with non-stainless tools.

Service classes according to Eurocode 5: Definition of the service classes environment are given within the EN1995-1-1

Service Class	Description	Examples
1	Moisture content in the materials corresponding to a temperature of 20°C and the relative humidity of the surrounding air only exceeding 65% for a few weeks per year.	Warm roof, intermediate floors, timber frame walls - internal and party walls.
2 SC 2	Moisture content in the materials corresponding to a temperature of 20°C and the relative humidity of the surrounding air only exceeding 85% for a few weeks per year.	Cold roof, ground floors, timber frame walls - external walls where member is protected from direct wetting.
3	Climatic conditions leading to higher moisture contents than in service class 2.	External uses - fully exposed.

C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON

Strong-Tie

Find more information on our website

Ţ

www.strongtie.co.uk

1

Project: Stoner House Location: Crawley Frameclad

Loose Fasteners

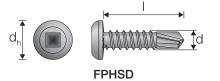
COBS U.S.A.

Contents

BIANANANAN

Framing Screw - FPHSD16
Self-Drilling Screw - X1217
Bracket Screw - XLSH18
Bracket Screw - X1B19
Bracket Screw - XLQ
Self-Drilling Screw - E1B
Self-Drilling Screw - X34
Hex Head Masonry Screw - TTN

Framing Screw - FPHSD


Framing screw for connecting LGS sections together. The FPHSD is a self-drilling screw with a #3 drill point and flat pan head. These screws are usually fixed through pre-formed holes in the steel frame, however they are capable of drilling through steel up to 5.5mm thick.

Material: Steel - Electro galvanised

Installation: Holes in the frame should be aligned before the framing screw is installed.

Key Features:

- 5.5mm x 19mm
- Flat pan head
- #3 square drive (not included)
- #3 drill point

Product Dimensions

Model No.	Model No.		TPI	Drill point	Drive Type	ß	
	d _h	d	I				
FPHSD34S1214R	9	5.5	19	14	#3	#3 Square	100,000

Performance Values

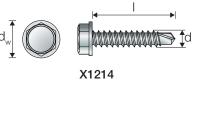
Model No.	Member Thickness	Safe Workin	g Loads [kN]	Characteristic Loads [kN]		
	[mm]	Shear	Tension	Shear	Tension	
FPHSD34S1214R	1.2	2.2	1.1	3.5	1.7	
FPH3D3431214h	1.6	2.7	1.4	4.3	2.3	

SIMPSON

Strong-Tie

Self-Drilling Screw - X12

The X12 screws are self-drilling screws with a hex washer head and drill point. The X1214 screws have 14 TPI and a #3 drill point capable of drilling through steel up to 5mm thick. The X1224 screws have 24 TPI and a #5 drill point capable of drilling through steel up to 12.5mm thick. Driver bit not included.


Material: Steel - Ruspert 500 coating

Installation: X1214 self-drilling screws connect steel section to steel section without the need for pre drilling.

X1224 self-drilling screws connect LGS sections to hot rolled steel without the need for pre drilling.

Key Features:

- 5/16" hex washer head
- Drill point
- X1214 suitable for 450 grade hardened steel
- X1224 suitable for hot rolled steel sections up to 12.5mm
- CE marked to EN14566

Product Dimensions

Model No.		Fastener dim	ensions [mm]	TPI	Drill Point	ß	
	Head	d _w	d	I			¥
X1214D325	⁵ / ₁₆ " Hex	12.2	5.5	25	14	#3	250
X1214D350	⁵ / ₁₆ " Hex	12.2	5.5	50	14	#3	250
X1224D540	⁵ / ₁₆ " Hex	12.2	5.5	40	24	#5	250

Performance Values

	Fastener Performance									
	Si	afe Working Loads [kN]	Characteristic Loads [kN]						
Model No.	Tension	Shear	Torsional [Nm]	Tension	Shear	Torsional [Nm]				
X1214D325										
X1214D350	4.1	2.8	3.3	6.5	4.5	5.3				
X1224D540										

		Pull-Out Performance Values / Support Thickness [mm]												
Model No.	Safe Working Loads [kN]						Characteristic Loads [kN]							
	1.2	1.5	2	3	4	5	6	1.2	1.5	2	3	4	5	6
X1214D325	0.8	0.9	1.2	2.1	2.6	3.3	4.1	1.2	1.4	1.8	3.4	4.2	5.2	6.5
X1214D350	0.8	0.9	1.2	2.1	2.6	3.3	4.1	1.2	1.4	1.8	3.4	4.2	5.2	6.5
X1224D540	0.6	0.8	1.0	2.0	2.3	2.9	3.6	1.0	1.2	1.5	3.2	3.6	4.6	5.8

1) Steel thickness <4.0mm BS EN10025-S355, minimum yield strength 355N/mm²

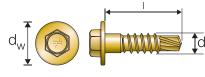
2) Steel thickness ≥4.0mm BS EN10025-S275, minimum yield strength 275N/mm²

3) Pull out is limited by tensile strength of the fastener

SIMPSON

Strong-Tie

Bracket Screw - XLSH


Loose Fasteners The XLSH screws are self-drilling screws with a hex washer head and shoulder. The screw is used for connecting movement clip and LGSSC brackets to LGS sections. Driver bit not included.

Material: Steel - Yellow zinc coating

Installation: The shoulder screw is positioned through the slots in the movement bracket and fixed to the LGS sections. For the LGSSC bracket the screw is positioned through the lower slots of the LGSSC bracket and fixed to the lower stud of the LGS sections. See page 61.

Key Features:

- Hex head shoulder screw
- Self-drilling point
- Suitable for 450 grade hardened steel

XLSH

Product Dimensions

Model No.		Fastener Dim	TPI	Drill point	ß			
	Head	d _w	d	I			Ť	
XLSH34B1414-83	⁵ / ₁₆ " Hex	15.6	6.2	19	14.0	#3	83	
XLSH78B1414	⁵ / ₁₆ " Hex	15.6	6.2	22	14.0	#3	N/A	

XLSH78B1414 screws supplied with specific brackets only. Not available for individual purchase.

Loose Fasteners

Bracket Screw - X1B

The X1B is a self-drilling screw with a #3 drill point and 5/16" hex washer head. The drill point allows the screw to penetrate the steel without the need for a pilot hole. Suitable for connecting LGS sections together between 0.9 mm and 2.6mm thickness. Ideally suited for use with LGSSC brackets. Driver bit not included.

Material: Steel - Bright zinc coating

Installation: The screw is positioned through the round holes in the LGSSC bracket and fixed to the upper stud of the LGS sections. See page 61.

Key Features:

- 5.5mm x 25mm
- 5/16" hex washer head
- #3 drill point
- Suitable for 450 grade hardened steel
- Also available collated as X1S screws for Quik Drive system

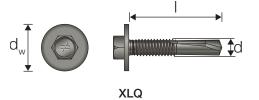
X1B

Product Dimensions

Model No.	Fa	astener Dim	ensions [mr	n]	TPI	Drill point	B	
	Head	dw	d	I				
X1B1214R100	⁵ / ₁₆ " Hex	10.1	5.5	25	14	#3	100	

Model No.	Member Thickness	Safe Working	g Loads [kN]	Characteristic Loads [kN]		
WOUEI NO.	[mm]	Shear	Tension	Shear	Tension	
	1.2	2.2	0.8	3.5	1.2	
X1B1214R100	1.6	2.8	1.2	4.5	1.9	

Bracket Screw - XLQ


The XLQ is a self-drilling screw with a #5 drill point and hex washer head. It has an integral large washer. Commonly used for connecting movement brackets. Driver bit not included.

Material: Steel - Quik Guard coating

Installation: The XLQ screw fixes the IDCB, SCHA and LGSSC connectors back to the hot rolled steel section.

Key Features:

- 5.8mm x 32mm
- 5/16" hex washer head
- 15.5mm integral washer
- #5 drill point
- Suitable for hot rolled steel sections up to 12.5mm

INDOOR

Product Dimensions

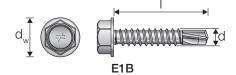
Model No.	Fa	istener Dim	ensions [mr	n]	TPI	Suitable Material Thickness	Drill point	ß
	Head	d _w	d	I		[mm]	point	\rightarrow
XLQ114B1224/1	⁵ / ₁₆ " Hex	15.5	5.8	32	24	3.5 - 12.5	#5	1
XLQ114B1224-250	⁵ / ₁₆ " Hex	15.5	5.8	32	24	3.5 - 12.5	#5	250

Model No.	Member Thickness [mm]	Safe Working Loads [kN]	Characteristic Loads [kN]		
Woder No.		Shear			
	1.2	4.5	7.2		
XLQ114B1224	1.6	5.0	8.1		

Model No.	Member Thickness [mm]	Safe Working Loads [kN] Pu	Characteristic Loads [kN]	
	3.2	1.7	2.6	
	4.8	2.6	3.8	
XLQ114B1224	6.4	3.4	5.1	
	9.5	5.1	7.7	

SIMPSON Strong-Tie

Self-Drilling Screw - E1B The E1B is a 6.1mm diameter self-drilling screw with a #3 drill point and hex washer head. The


with a #3 drill point and hex washer head. The drill point allows the screw to penetrate the steel without the need for a pilot hole. Suitable for use with hold downs such as S/HDS. Driver bit not included.

Material: Steel - Clear zinc coating

Installation: Recommended for use with certain Simpson Strong-Tie connectors for fixing to steel up to 8mm thick.

Key Features:

- 6.1mm x 25mm
- 3/8" hex washer head
- 12.2mm integral washer
- #3 drill point

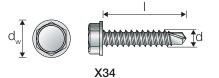
Product Dimensions

Model No.		Fastener dim	ensions [mm]	TPI	Drill Point	R	
	Head	d _w	d	I			\rightarrow
E1B1414B/1	³ / ₈ " Hex	12.2	6.1	25	14	#3	1
E1B1414B	³ / ₈ " Hex	12.2	6.1	25	14	#3	2500

Model No.	Member Thickness	Safe Workin	ig Loads [kN]	Characteristic Loads [kN]		
	[mm]	Shear	Tension	Shear	Tension	
E1B1414B	1.2	1.3	0.6	2.0	0.9	
	1.6	2.7	1.1	4.0	1.7	

Self-Drilling Screw - X34

SIMPSON Strong-Tie


The X34 is a 4.8mm diameter self-drilling screw with a #3 drill point and hex washer head. The drill point allows the screw to penetrate the steel without the need for a pilot hole. Driver bit not included

Material: Steel - Clear zinc coating

Installation: Recommended for use with Simpson Strong-Tie tension ties when fixing to light gauge steel.

- 4.8mm x 19mm
- 5/16" hex washer head
- #3 drill point

Loose Fasteners

Product Dimensions

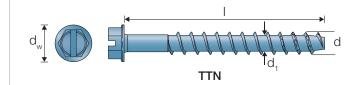
Model No.	Fa	astener Dim	ensions [mi	n]	TPI	Drill point	ß
	Head	d _w	d	I		point	-
X34B1016R100	⁵ / ₁₆ " Hex	10.5	4.8	19	16	#3	100

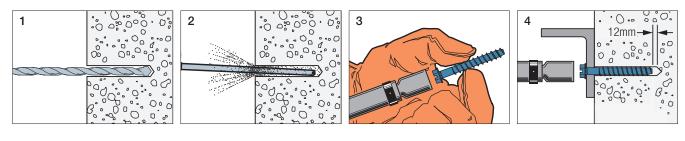
Model No.	Mombor Thickness [mm]	Safe Working	j Loads [kN]	Characteristic Loads [kN]		
	Member Thickness [mm]	Shear	Tension	Shear	Tension	
	1.2	1.6	0.6	2.5	0.9	
X34B1016R100	1.6	2.4	0.9	3.6	1.4	

SIMPSON Strong-Tie

Loose Fasteners

Hex Head Masonry Screw - TTN


The Titen concrete and masonry screw is ideal for attaching all types of components to concrete and masonry. The improved thread design undercuts the base material more efficiently. This reduces installation torque making it easier to drive without binding, breaking or stripping, even during installation into hard base material. Driver bit not included.

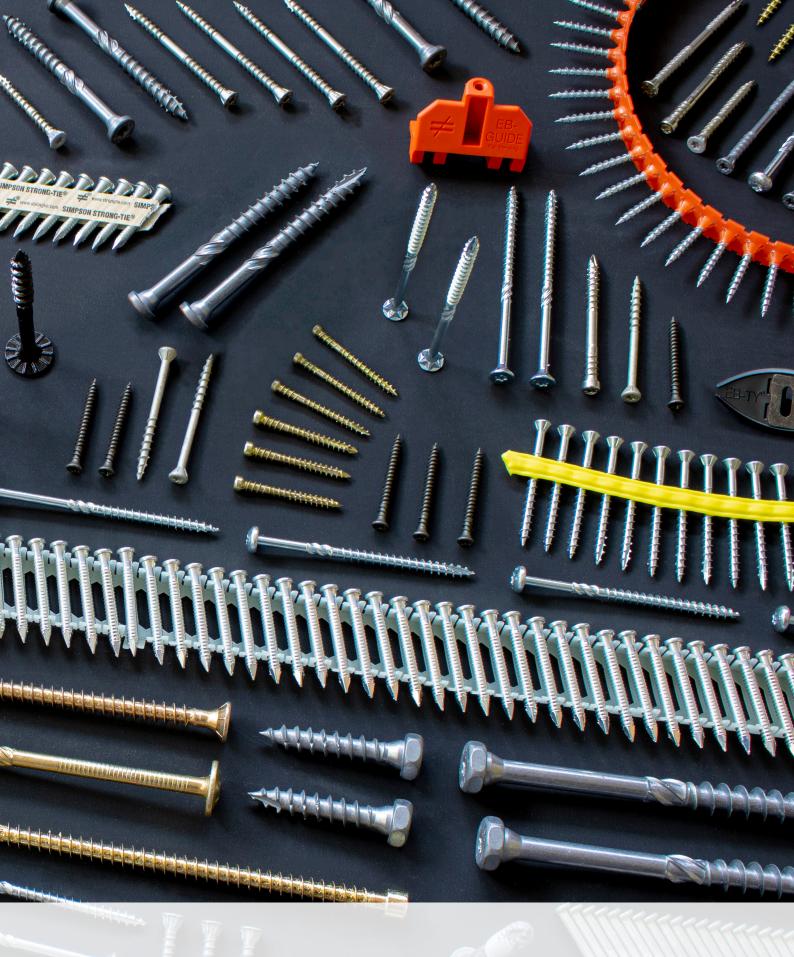

Material: Steel - Zinc plated with baked-on ceramic coating

Installation: The Titen hex head screw connects over sail and LGSSC brackets to the concrete substrate. Pre drilling is required.

Key Features:

- Patented undercutting threads reduce installation torque
- Hex and flat screw head helps with installation
- 6.4mm diameter
- Blue colour for simple on site recognition
- For use in dry interior environments
- Drill bit included in each box

Product Dimensions


Model No.		C)imensions [mm]		Drill Diameter	\$
	Head	d _w	I	d	d ₁		
TTN25134H	⁵ / ₁₆ " Hex	10.0	45	6.4	4.8	4.8	100

Performance Values

	Recommende	d Loads [kN]	Design Resis	stance [kN]	Characteristic Resistance [kN]	
Model No.	Tension (N _{Rec})	Shear (V _{Rec})	Tension (N _{rd})	Shear (V _{rd})	Tension (N _{rk})	Shear (Vrk)
TTN25134H	1.9	3.2	2.7	4.5	4.8	8.7

Installation Information

Characteristic	Symbol	Unit	TTN25134H
Drill Hole Depth	h,	[mm]	45
Effective Embedment Depth	h _{ef}	[mm]	26
Characteristic Spacing	S _{cr,N}	[mm]	78
Minimum Spacing	S _{min}	[mm]	50
Characteristic Edge Distance	C _{cr,N}	[mm]	75
Minimum Edge Distance	C _{min}	[mm]	45
Minimum Concrete Thickness	h _{min}	[mm]	80
Installation Torque (C20/25)	$T_{sd} \leq$	[Nm]	105

NEW to the UK, Europe's Leading Range of Premium Fasteners!

Simpson Strong-Tie® now offers a complete range of nails and screws for almost every application, including stainless steel, structural and collated options. Also featuring the award winning Quik Drive auto-feed system. **Building Safer Stronger Structures.**

www.strongtie.co.uk

Quik Drive Collated Fasteners

ununun

Quik Drive

SIMPSON

Strong-Tie

Contents

Fibre Cement Board to Steel Screw - CBSDQ

Quik Drive Collated Fasteners The CBSDQ screw is suitable for fixing fibre cement board to steel between 1mm and 3mm thick. Ideally suited for modular housing construction. It has a countersunk, ribbed flat head with a fine thread and a drill point with wings. The wings ream a larger hole in the cement board, and then break off when they connect with the steel. This allows the cement board to be pulled tight to the steel substrate.

Material: Steel - Quik Guard coating

Installation: The CBSDQ screws connect most types of cement board and fibre cement board to the LGS sections without the need for pre drilling. Only suitable for fixing to steel.

Key Features:

- CE Marked to EN14566
- Fibre cement board to steel frame 1mm to 3mm thickness
- Ribbed countersunk head with self tapping fine thread
- Drill point with wings to clear debris from hole
- #2 square undersized driver bit included (BIT2SUE)

CBSDQ

Product Dimensions

Model No.	odel No.		ns [mm]	Drive Type	TPI	Drill Point	Qty per Strip	Recommended RPM	Quik Drive Attachment	Ð
	d _h	d	I.							Ť
CBSDQ41E	8.4	4.2	41	#2 Undersize Square	18	#2	30	2500	QDPR051E / QDPR064E / QD76KE	1500
CBSDQ55E	8.4	4.8	57	#2 Undersize Square	16	#2	30	2500	QDPR064E / QD76KE	1000

Performance Values

	Member Thickness mm]	S	Safe Working Loads [kN	1]	Characteristic Loads [kN]			
Model No.		Head Pull-Through	Shear	Tension	Head Pull-Through	Shear	Tension	
CBSDQ41E	1.2	0.8	1.0	0.8	1.2	1.6	1.2	
CBSDQ55E	1.6	0.8	1.1	1.2	1.2	1.7	1.9	

Notes:

1) Head pull-through based upon 12mm Fibre Cement Board

Quik Drive Collated Self-Drilling Screw - X1S

SIMPSON

Strong-Tie

The X1S is a self-drilling screw with a #3 drill point and 8mm hex washer head. The drill point allows the screw to penetrate the steel without the need for a pilot hole. Suitable for connecting LGS sections together between 0.9mm and 2.6mm thickness.

Material: Steel - Electro galvanised

Installation: Self-drilling screws connect steel section to steel section without the need for pre drilling.

Key Features:

- #3 drill point
- 5/16" hex washer head
- LGS section to LGS section tek screw
- Compatible with QDPROHX516G2 Quik Drive attachment

X1S

Product Dimensions

Model No.	F	astener Dime		TPI	Drill Point	Qty per Strip	Recommended RPM	Quik Drive Attachment	R	
	Head	d _w	d	I						\checkmark
X1S1214	⁵ / ₁₆ " Hex	10.1	5.5	25	14	#3	22	2500	QDPROHX516G2	1500

	Manulaan	Safe Workin	g Loads [kN]	Characteristic Loads [kN]		
Model No.	Member Thickness [mm]	Shear	Tension	Shear	Tension	
VICIOIA	1.2	2.2	0.8	3.5	1.2	
X1S1214	1.6	2.8	1.2	4.5	1.9	

Quik Drive Attachments

64

8

6

Į,

de

Contents

Quik Drive Attachment 51mm - QDPRO51E.... Quik Drive Attachment 25mm - QDPROHX516G2

. .31

Quik Drive Attachment 51mm - QDPR051E

The QDPRO51E Quik Drive attachment is suitable for screws ranging from 25mm to 51mm in length. Smooth nose piece prevents marking of the work surface. Teflon coated moving parts reduce friction and impart non-stick properties, meaning that no lubrication is required. Available with or without extension pole. Use code QDPRO51E for attachment only and QDPRO51KE for added extension pole. Suitable for use with CBSDQ41E screws.

Key Features:

C-LGS-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

- Suitable for screws 25mm to 51mm
- Self locking depth adjustment for accurate countersinking of screws
- Quick connection and release to screw gun or extension pole
- Teflon coated moving parts for durable performance
- Available as kit with or without extension pole

Smooth nose will not mark drywall surface.

Self-locking depth adjustment for consistent countersink.

QDPR051E

ł	(it includes:	QDPR051E	QDPR051KE	Co	mpatib	le Screws
Extension	QDEXTE		\checkmark			2011/5
Attachment	QDPR051E	\checkmark	\checkmark	BHS		RDWF RDPF
Pouch	QUIVER	✓	\checkmark		DWC DWF	CHB
Mandrel	MANDREL165E-RC	\checkmark	\checkmark	DV		WSHL WSC
Carry Case	TOOLCASE-LGE		\checkmark	DWI		DWHL
	BIT2PE (x3)	\checkmark	\checkmark	CBS		WSNTL
Spare Bits	BIT2SE (x1)	\checkmark	\checkmark	PP		(44 mm and 51 mm)
	BIT3SUE	\checkmark	\checkmark			and of fining

For more information on collated Quik Drive screws see our Premium Fasteners catalogue.

SIMPSON

Strong-Tie

Quik Drive Attachment 64mm - QDPRO64E

The QDPRO64E Quik Drive attachment is suitable for screws ranging from 38mm to 64mm in length. The serrated nose piece provides increased stability and prevents skidding on smooth or slippery surfaces. Teflon coated moving parts reduce friction and impart non-stick properties, meaning that no lubrication is required. Available with or without extension pole. Use code QDPRO64E for attachment only and QDPRO64KE for added extension pole. Suitable for use with CBSDQ41E and CBSDQ55E screws.

Quik Drive Attachments

Key Features:

- Suitable for screws 38mm to 64mm
- Self locking depth adjustment for accurate countersinking of screws
- Quick connection and release to screw gun or extension handle
- Teflon coated moving parts for durable performance
- Available as kit with or without extension pole

Non-skid nose piece increases stability (not interchangeable).

SIMPSON

Strong-Tie

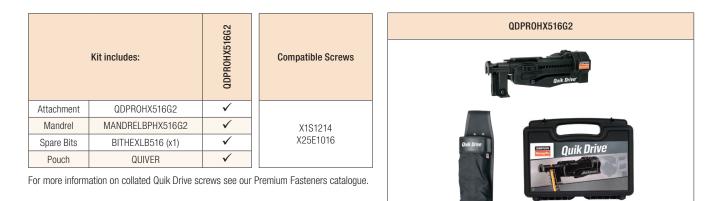
Uniform toe-nailing and countersink on slick surfaces.

ł	QDPR064E	QDPR064KE	Compatib	le Screws	
Extension	QDEXTE		\checkmark		
Attachment	QDPR064E	✓	\checkmark	00000	000711
Pouch	QUIVER	✓	\checkmark	CBSDQ DTHQ	SSDTH WSNTL
Mandrel	MANDREL191E-RC	\checkmark	\checkmark	PPSD	WSNTLG
Carry Case	TOOLCASE-LGE		\checkmark	SSDCL SSWSCB	CHB DCSD
Creara Dita	BIT2SE (x2)	\checkmark	\checkmark	00000D	0000
Spare Bits	BIT3SUE	✓	\checkmark		

For more information on collated Quik Drive screws see our Premium Fasteners catalogue.

Quik Drive Attachment 25mm - QDPROHX516G2

The QDPROHX516G2 is designed to be used in light gauge steel applications with Simpson Strong-Tie X1S1214 self drilling screws. Teflon coated moving parts reduce friction and impart non-stick properties, meaning that no lubrication is required. This kit comes with mandrel, hex driver bit, screw quiver and carry case. Extension poles can be ordered separately.


Key Features:

- Suitable for X1S1214 hex head screws
- Self locking depth adjustment to prevent damage to steel
- Quick connection and release to screw gun or extension pole
- Can be used with QDEXTG2-T2 extension handle
- Teflon coated moving parts for durable performance

SIMPSON

Strong-Tie

Chemical Anchor Systems

Contents

Methacrylate Resin - ATHP

Methacrylate Resin - ATHP

ATHP is a styrene free methacrylate resin suitable for securing threaded rod into concrete.

Easy to dispense and fast curing, specially designed for structural fixings that need connecting to concrete.

Unique feature: The resin changes colour to grey as it cures, helping the installer on site.

Installation: Ensure all drilled holes are cleaned (2 x blows - 4 x brushes - 2 x blows) before dispensing resin.

Key Features:

- ETA approved for threaded rod installations
- Changes colour as it cures
- Fast curing
- Low odour
- Non-flammable
- 2 mixing nozzles supplied
- 300 ml and 420 ml tubes

Product Dimensions

Model No.	Description
ATHP300BG-UK	300 ml
ATHP420BG-UK	420 ml

Product Values

C-LGS-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC

Basic load data for single anchor with no influence of edge distances and spacings ^{4) 7)} / DESING METHOD EOTA TR 029																			
					M8 M10		M12		M16		M20		M24						
				5.8	A4-70	5.8	A4-70	5.8	A4-70	5.8	A4-70	5.8	A4-70	5.8	A4-70				
h _{et} = 8d [mm]				6	4	80		96		1:	28	160		192					
					Charact	eristic re	sistance) ^{1) 8)}											
	C20/25				-	-	-	-	12.7	12.7	22.5	22.5	-	-	-	-			
	C30/37	Tension	N	[kN]	-	-	-	-	13.2	13.2	23.4	23.4	-	-	-	-			
	C40/50	Tension	N _{rk}	[KN]	-	-	-	-	13.5	13.5	24.1	24.1	-	-	-	-			
Cracked concrete	C50/60				-	-	-	-	13.8	13.8	24.5	24.5	-	-	-	-			
(T1: 24°C/40°C)	C20/25		V _{Rk}		-	-	-	-	21.0	25.3	39.0	45.0	-	-	-	-			
	C30/37	Shear 5)		V _{rk} [V	V	[kN]	-	-	-	-	21.0	26.3	39.0	46.8	-	-	-	-
	C40/50	oncar			[KN]	-	-	-	-	21.0	27.1	39.0	48.2	-	-	-	-		
	C50/60				-	-	-	-	21.0	27.6	39.0	49.1	-	-	-	-			
	C20/25					N _{rk}		16.1	16.1	23.9	23.9	32.6	32.6	51.4	51.4	75.4	75.4	101.3	101.3
	C30/37	Tension	Tension	Tension	Tension		[kN]	18.0	18.0	26.7	26.7	36.5	36.5	57.6	57.6	84.4	84.4	113.4	113.4
Non-cracked	C40/50		Rk	[ICIA]	18.0	19.8	29.0	29.4	40.0	40.0	63.3	63.3	92.7	92.7	124.6	124.6			
concrete 6)	C50/60				18.0	20.9	29.0	31.0	42.0	42.3	66.9	66.9	98.0	98.0	131.7	131.7			
(T1: 24°C/40 [°] C)	C20/25				9.0	13.0	15.0	20.0	21.0	30.0	39.0	55.0	61.0	86.0	88.0	124.0			
	C30/37	Shear 5)	V _{sk}	[kN]	9.0	13.0	15.0	20.0	21.0	30.0	39.0	55.0	61.0	86.0	88.0	124.0			
	C40/50		nk		9.0	13.0	15.0	20.0	21.0	30.0	39.0	55.0	61.0	86.0	88.0	124.0			
P "	C50/60		N40	[Nim]	9.0	13.0	15.0	20.0	21.0	30.0	39.0	55.0	61.0	86.0	88.0	124.0			
Bendin	g Moment		M ⁰ _{Rk,s}	[Nm]	19.0	26.0	37.0	53.0	66.0	92.0	167.0	233.0	326.0	454.0	561.0	784.0			

1. Steel failure decisive

2. The design resistances have been calculated using the partial safety factors for resistances stated in the ETA-assessment(s).

3. The recommended loads have been calculated using the partial safety factors for resistances stated in ETA-assessment(s) and with a partial safety factor for actions of yF=1.4.

4. The load figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing $s \ge 15$ cm (any diameter) or with a rebar spacing $s \ge 10$ cm, if the rebar diameter is 10 mm or smaller.

5. The figures for shear loads are based on a single anchor without influence of concrete edges.

6. Concrete is considered non-cracked when the tensile stress within the concrete is $\sigma L + \sigma R \le 0$. In the absence of detailed verification $\sigma R = 3$ N/mm² can be assumed (σL equals the tensile stress within the concrete induced by external loads, anchor loads included).

7. For combined tension and shear loads or anchor groups and/or in case of edge influence, a calculation per TR 029, design method A shall be performed. For details see ETA - assessment(s)

8. Values for temperature range T1: 24°C/40°C: -40°C to +40°C (max.long term temperature: +24°C; max. short term temperature: +40°C)

ATHP300BG-UK ATHP420BG-UK

SIMPSON

Methacrylate Resin - ATHP

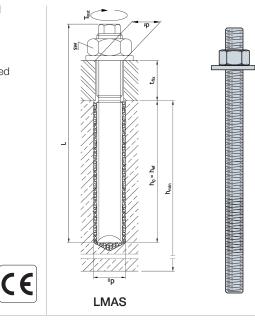
Strong-Tie

					Design	resistar	1Ce 1) 2) 8)									
	C20/25				-	-	-	-	8.4	8.4	15.0	15.0	-	-	-	-
	C30/37	Tonsia-	. кі	FLAD	-	-	-	-	8.8	8.8	15.6	15.6	-	-	-	-
	C40/50	Tension	N _{Rd}	[kN]	-	-	-	-	9.0	9.0	16.1	16.1	-	-	-	-
Cracked concrete	C50/60				-	-	-	-	9.2	9.2	16.4	16.4	-	-	-	-
(T1: 24°C/40°C)	C20/25				-	-	-	-	16.8	16.9	30.0	30.0	-	-	-	-
	C30/37	0		TI AIS	-	-	-	-	16.8	17.6	31.2	31.2	-	-	-	
	C40/50	Shear 5)	V _{Rd}	[kN]	-	-	-	-	16.8	18.1	31.2	32.1	-	-	-	
	C50/60				-	-	-	-	16.8	18.4	31.2	32.7	-	-	-	
	C20/25				10.7	10.7	15.9	15.9	21.7	21.7	34.3	34.3	50.2	50.2	67.5	67
	C30/37				12.0	12.0	17.8	17.8	24.3	24.3	38.4	38.4	56.3	56.3	75.6	75
	C40/50	Tension	N N _{Rd}	[kN]	12.0	13.2	19.3	19.6	26.7	26.7	42.2	42.2	61.8	61.8	83.1	83
Non-cracked	C50/60				12.0	13.9	19.3	20.7	28.0	28.2	44.6	44.6	65.3	65.3	87.8	87
concrete 6) (T1: 24°C/40°C)	C20/25				7.2	8.3	12.0	12.8	16.8	19.2	31.2	35.3	48.8	55.1	70.4	79
(11.24 0/40 0)	C30/37				7.2	8.3	12.0	12.8	16.8	19.2	31.2	35.3	48.8	55.1	70.4	79
	C40/50	Shear 5)	V _{Rd}	[kN]	7.2	8.3	12.0	12.8	16.8	19.2	31.2	35.3	48.8	55.1	70.4	79
	C50/60				7.2	8.3	12.0	12.8	16.8	19.2	31.2	35.3	48.8	55.1	70.4	79
Bendine	g Moment		M _{Bd}	[Nm]	15.2	16.7	29.6	34.0	52.8	59.0	133.6	149.4	260.8	291.0	448.8	50
			l hu		Recomm	ended L	nads 1) 3)	8)								
	C20/25				-	-	-	-	6.0	6.0	10.7	10.7	-	-	-	
	C30/37				-	-	-	-	6.3	6.3	11.1	11.1	-	-	-	
	C40/50	Tension	N N _{Rec}	[kN]	-	-	-	-	6.5	6.5	11.5	11.5	-	-	-	
Procked concrete	C50/60				_	-	-	-	6.6	6.6	11.7	11.7	-	-	-	
Cracked concrete (T1: 24°C/40°C)	C20/25				-	-	+	-	12.0	12.1	21.4	21.4	-	-	-	-
							-	-	-				-	-		-
	C30/37	Shear 5)	V V Rec	[kN]	-	-	-	-	12.0	12.5	22.3	22.3	-	-	-	
	C40/50		100		-	-	-	-	12.0	12.9	22.3	22.9	-	-	-	
	C50/60		_		-	-	-	-	12.0	13.1	22.3	23.4	-	-	-	40
	C20/25				7.7	7.7	11.4	11.4	15.5	15.5	24.5	24.5	35.9	35.9	48.2	48
	C30/37	Tension	N _{Rec}	[kN]	8.6	8.6	12.7	12.7	17.4	17.4	27.4	27.4	40.2	40.2	54.0	54
Non-cracked	C40/50		Hec	[]	8.6	9.4	13.8	14.0	19.1	19.1	30.1	30.1	44.1	44.1	59.3	59
concrete 6)	C50/60		_		8.6	9.9	13.8	14.8	20.0	20.2	31.8	31.8	46.7	46.7	62.7	62
(T1: 24°C/40°C)	C20/25				5.1	6.0	8.6	9.2	12.0	13.7	22.3	25.2	34.9	39.4	50.3	56
	C30/37	Shear 5)) V _{Rec}	[kN]	5.1	6.0	8.6	9.2	12.0	13.7	22.3	25.2	34.9	39.4	50.3	56
	1 0 10 / 50		Rec	[]	E 1	0.0	0.0	9.2	10.0	1 10 7	1 00 0	05.0	1010			
	C40/50				5.1	6.0	8.6		12.0	13.7	22.3	25.2	34.9	39.4	50.3	
	C50/60				5.1	6.0	8.6	9.2	12.0	13.7	22.3	25.2	34.9	39.4	50.3	56
Bendin			M _{Rec}	[Nm]			-		-	-			-			56
`	C50/60 g Moment		M _{Rec}	[Nm]	5.1 10.9	6.0	8.6 21.1 Data	9.2 24.3	12.0 37.7	13.7 42.1	22.3 95.4	25.2 106.7	34.9 186.3	39.4 207.9	50.3 320.6	56 35
• Dr	C50/60 g Moment y or wet concre	,	M _{Rec}	[Nm]	5.1 10.9 Insta M8	6.0 11.9	8.6 21.1 Data	9.2 24.3	12.0 37.7 M1	13.7 42.1 2	22.3 95.4	25.2 106.7 16	34.9 186.3	39.4 207.9 20	50.3 320.6	56 35 24
• Dr • Ov	C50/60 g Moment y or wet concre erhead installa	,	M _{Rec}		5.1 10.9 Insta M8 Steel	6.0 11.9	8.6 21.1 Data M Steel	9.2 24.3 10 A4	12.0 37.7 M1 Steel	13.7 42.1 2 A4	22.3 95.4 M Steel	25.2 106.7 16 A4	34.9 186.3 M Steel	39.4 207.9 20 A4	50.3 320.6 M: Steel	56 35 24 A
Dr Ov Nominal drill t	C50/60 g Moment y or wet concre erhead installa tole diameter	,	M _{Rec}	[mm]	5.1 10.9 Insta M8 Steel 10	6.0 11.9	8.6 21.1 Data M Steel 1	9.2 24.3 10 A4 2	12.0 37.7 M1 Steel 14	13.7 42.1 2 A4	22.3 95.4 M Steel 1	25.2 106.7 16 A4 8	34.9 186.3 M Steel 2	39.4 207.9 20 20 A4 24	50.3 320.6 M: Steel 2	50 35 24 8
Dr Ov Nominal drill h Cylindrical dri	c50/60 g Moment y or wet concre erhead installa nole diameter Il hole depth	tion is not	M_{Rec}	[mm] [mm]	5.1 10.9 Insta Steel 10 64	6.0 11.9	8.6 21.1 Data M ^T Steel 1 8	9.2 24.3 10 A4 2 0	12.0 37.7 Steel 14 96	13.7 42.1 2 A4 4 5	22.3 95.4 M Steel 1 12	25.2 106.7 16 A4 8 28	34.9 186.3 M Steel 2 10	39.4 207.9 20 44 60	50.3 320.6 M: Steel 2 19	50 35 24 8 92
Dr Ov Nominal drill h Cylindrical dri Diameter of clearence	C50/60 g Moment y or wet concre erhead installa nole diameter II hole depth re hole of the fi	ixture	M_{Rec} ategory 1) permitted d_{0} $h_{0} \geq$ d_{r}	[mm] [mm]	5.1 10.9 Insta 8 Steel 10 64 9	6.0 11.9	8.6 21.1 Data M Steel 1 8 1	9.2 24.3 10 A4 2 0 2	12.0 37.7 Steel 14 96	13.7 42.1 2 A4 4 5	22.3 95.4 M Steel 1 12 12	25.2 106.7 16 A4 8 28 8	34.9 186.3 M Steel 2 10 2	39.4 207.9 20 20 44 24 60	50.3 320.6 M: Steel 2 19 2	50 35 24 8 92 6
Dr Ovi Nominal drill h Cylindrical dri Diameter of clearence Width across flats D	y or wet concre erhead installa nole diameter Il hole depth e hole of the fi IN 934 (ISO 4	ixture	M_{Rec} ategory 1) permitted d_{0} $h_{0} \geq$ d_{r} SW	[mm] [mm] [mm]	5.1 10.9 Insta 88 Steel 10 64 9 13	6.0 11.9	8.6 21.1 Data Steel 1 8 1 17(9.2 24.3 10 A4 2 0 2 16)	12.0 37.7 Steel 14 96 14 19(1	13.7 42.1 2 A4 4 5 4 18)	22.3 95.4 Steel 1 12 1 2	25.2 106.7 16 A4 8 28 8 8	34.9 186.3 M Steel 2 10 2 3	39.4 207.9 20 44 24 60 22 30	50.3 320.6 M: Steel 2 19 2 2 3	56 35 24 8 92 6 6
Dr Ov Ov Nominal drill h Cylindrical dri Diameter of clearence	y or wet concre erhead installa nole diameter Il hole depth e hole of the fi IN 934 (ISO 4	ixture	M_{Rec} ategory 1) permitted d_{0} $h_{0} \geq$ d_{r}	[mm] [mm]	5.1 10.9 Insta 8 Steel 10 64 9	6.0 11.9	8.6 21.1 Data M Steel 1 8 1	9.2 24.3 10 A4 2 0 2 16)	12.0 37.7 Steel 14 96	13.7 42.1 2 A4 4 5 4 18)	22.3 95.4 Steel 1 12 1 2	25.2 106.7 16 A4 8 28 8	34.9 186.3 M Steel 2 10 2 3	39.4 207.9 20 20 44 24 60	50.3 320.6 M: Steel 2 19 2 2 3	56 35 24 8 92 6
Dr Ovi Nominal drill H Cylindrical dri Diameter of clearence Width across flats D	y or wet concre erhead installa nole diameter Il hole depth e hole of the fi IN 934 (ISO 4	ixture	M_{Rec} ategory 1) permitted d_{0} $h_{0} \geq$ d_{r} SW	[mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 0 64 9 13 10 edge dista	6.0 11.9	8.6 21.1 Data Steel 1 1 8 1 1 (2 2 membe	9.2 24.3 10 A4 2 2 16) 0 2 16) 0	12.0 37.7 Steel 14 96 14 19(1 30	13.7 42.1 2 A4 4 5 4 18) 0	22.3 95.4 Steel 1 12 1 2 6	25.2 106.7 16 A4 8 28 8 8 4 4 0	34.9 186.3 M Steel 2 10 2 3 3 9	39.4 207.9 20 44 24 60 22 30 00	50.3 320.6 M: Steel 2 19 2 2 3 14	56 35 24 8 32 6 6 6 40
Dr Ovi Nominal drill H Cylindrical dri Diameter of clearence Width across flats D	y or wet concre erhead installa nole diameter Il hole depth e hole of the fi IN 934 (ISO 4	ixture	M_{Rec} ategory 1) permitted d_{0} $h_{0} \geq$ d_{r} SW	[mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 0 64 9 13 10 edge dista M8	6.0 11.9 Illation I A4	8.6 21.1 Data M Steel 1 8 1 17(2 membe M	9.2 24.3 10 A4 2 2 16) 0 er thickness	12.0 37.7 Steel 14 96 14 19(1 30 2000 2000 2000 2000 2000 2000 2000	13.7 42.1 2 A4 4 18) 0	22.3 95.4 M Steel 1 1 2 6 6 M	25.2 106.7 16 A4 8 28 8 44 60	34.9 186.3 M Steel 2 10 2 3 3 9 9 9 M	39.4 207.9 20 44 60 22 30 00 20	50.3 320.6 M: Steel 2 19 2 2 3 3 14	56 35 24 8 92 6 6 6 40 24
Dr Ovi Nominal drill H Cylindrical dri Diameter of clearence Width across flats D	y or wet concre erhead installa nole diameter Il hole depth e hole of the fi IN 934 (ISO 4	ixture	M _{Rec} ategory 1) permitted d ₀ h ₀ ≥ d ₁ SW T _{inst, max}	[mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 0 10 64 9 13 10 edge dista Steel 0	6.0 11.9	8.6 21.1 Data M Steel 1 1 8 1 17(2 membe M Steel	9.2 24.3 10 A4 2 0 2 16) 0 er thickne 10 A4	12.0 37.7 Steel 4 14 96 14 19(1 30 ess M1 Steel 4	13.7 42.1 2 A4 4 18) 0 12 A4	22.3 95.4 M Steel 1 1 12 1 2 6 6 M Steel	25.2 106.7 16 A4 8 28 8 8 44 60 7 16 A4	34.9 186.3 M Steel 22 10 2 3 3 9 9 M Steel	39.4 207.9 20 44 60 22 30 00 20 20 A4	50.3 320.6 M: Steel 2 19 2 3 14 2 3 3 14 5 5 teel	56 35 24 A 8 92 6 6 6 40 24 A
Dr Ovi Nominal drill H Cylindrical dri Diameter of clearence Width across flats D	C50/60 g Moment y or wet concru erhead installa iole diameter Il hole depth ie hole of the fi IN 934 (ISO 4) orque (max.)	ixture	M _{Rec} Attegory 1) permitted d ₀ h ₀ ≥ d ₁ SW T _{inst, max}	[mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 0 10 64 9 13 10 edge dista Steel 0 60	6.0 11.9 Illation I A4	8.6 21.1 Data M Steel 1 1 8 1 1 7(2 membe M Steel 6	9.2 24.3 10 A4 2 0 2 16) 0 er thickne 10 A4 0 A4 0	12.0 37.7 Steel 4 14 96 14 19(1 30 ess M1 Steel 7 70	13.7 42.1 2 A4 4 5 4 18) 0 2 12 A4 0	22.3 95.4 M Steel 1 1 12 1 1 2 6 6 M Steel 8	25.2 106.7 16 8 28 8 4 4 0 0 16 16 A4 30	34.9 186.3 M Steel 2 10 2 3 3 9 9 9 M Steel 9 9	39.4 207.9 20 44 60 22 30 00 20 20 44 90	50.3 320.6 M: Steel 2 19 2 3 3 14 5 4 5 4 6 10 5 10 10	56 35 24 A 8 32 6 6 6 6 40 24 A 00
Dr Ov Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation te	C50/60 g Moment y or wet concre erhead installa iole diameter Il hole depth e hole of the fi IN 934 (ISO 4 prque (max.)	tion is not ixture 032)	M _{Rec} ategory 1) permitted d₀ h₀ ≥ d₁ SW T _{inst, max}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 0 10 64 9 13 10 edge dista Steel 0 60 160	6.0 11.9 Illation I A4	8.6 21.1 20ta Steel 1 1 8 1 17(2 4 member M: Steel 6 6 20	9.2 24.3 10 A4 2 0 2 16) 0 0 A4 0	12.0 37.7 Steel 14 96 14 19(1 30 255 M1 5teel 77 77 24	13.7 13.7 42.1 2 A4 4 5 4 18) 0 12 A4 0 10	22.3 95.4 M Steel 1 1 1 2 6 M Steel 8 3 3	25.2 106.7 16 A4 8 28 8 4 0 0 16 A4 30 20	34.9 186.3 M Steel 2 2 10 2 2 3 3 9 9 9 0 0 8 0 9 9 0 0 0 9 9 0 0 0 9 0 0 0 0	39.4 207.9 20 44 20 20 20 20 20 20 20 20 20 20 20 20 20	50.3 320.6 M: Steel 2 19 2 2 3 3 14 2 2 3 3 14 2 5 2 8 3 5 2 14 10 10 10 10 10 10 10 10 10 10 10 10 10	56 35 24 8 32 6 6 6 6 6 6 40 24 24 24 20 30
Dr Ov Nominal drill r Cylindrical dri Diameter of clearence Width across flats D Installation to Effective embed	C50/60 g Moment y or wet concre erhead installa nole diameter II hole depth e hole of the fi IN 934 (ISO 4) orque (max.) dment depth (86)	tion is not ixture 032)	M _{Rec} ategory 1) permitted d₀ h₀ ≥ d₁ SW T _{inst, max} h _{ef,min} h _{ef,max}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 10.9 10.9 10.9 10 64 9 13 10 64 9 13 10 64 9 13 10 64 60 160 64	6.0 11.9 Illation I A4	8.6 21.1 20ta 5teel 1 1 8 1 1 17(2 4 membe 6 6 20(8	9.2 24.3 10 A4 2 0 2 16) 0 cr thicknown A4 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 19(1 30 ess M1 Steel 70 24 90	13.7 13.7 42.1 2 A4 4 5 4 18) 0 12 A4 0 10 6	22.3 95.4 M Steel 1 1 1 2 1 1 2 6 6 M Steel 8 3 3 2 1 2	25.2 106.7 16 A4 8 28 8 8 28 8 4 4 00 16 A4 30 20 22	34.9 186.3 M Steel 2 10 2 2 10 2 2 10 2 2 3 3 9 9 8 0 9 8 0 9 9 40 10 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 20 44 24 30 22 30 30 30 20 20 44 30 00 50 50 50 50 50 50 50 50 50 50 50 50	50.3 320.6 M: Steel 2 1 2 2 3 3 1 4 Steel 10 4 8 Steel	56 35 24 8 8 22 6 6 6 6 40 24 8 24 7 0 0 30 30
Or Over Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation to Effective embee Effective embedi Characteris	C50/60 g Moment y or wet concru erhead installa iole diameter II hole depth ie hole of the fi IN 934 (ISO 4) orque (max.) dment depth (80 tic spacing	tion is not ixture 032)	$\begin{array}{c c} & M_{Rec} \\ \hline \\ ategory 1) \\ permitted \\ \hline \\ d_0 \\ \hline \\ h_0 \geq \\ \hline \\ d_1 \\ \hline \\ SW \\ \hline \\ T_{inst, max} \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \hline \\$	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 10.8 10.9 10.9 10 64 9 13 10 64 9 13 10 64 10 60 160 64 192	6.0 11.9 Illation I A4	8.6 21.1 Data M Steel 1 1 17(2 17(2 17(2 17(2 17(2 17(2 17(2 17(2 17(2 17(17(2 17(17(17(17(17(17(17(17(17(17(9.2 24.3 10 A4 2 0 2 16) 0 er thickno 10 A4 0 00 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 96 14 96 14 96 30 85 85 85 85 96 24 96 28	13.7 13.7 42.1 2 A4 4 5 4 6 88	22.3 95.4 M Steel 1 1 12 1 1 2 6 6 M Steel 8 8 32 12 33	25.2 106.7 16 A4 8 28 8 4 4 50 0 16 A4 30 20 28 84	34.9 186.3 M Steel 2 10 2 2 10 2 2 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	39.4 207.9 20 4 4 60 22 30 00 22 30 00 20 44 90 00 00 60 80	50.3 320.6 M Steel 22 19 22 33 14 Steel 10 48 57	56 35 24 8 32 6 6 6 6 40 24 24 24 24 20 30 30 30 22 76
Dr Ovi Nominal drill f Cylindrical dril Diameter of clearence Width across flats D Installation to Effective embed Effective embedi Characteris Minimum	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth ie hole of the fi IN 934 (ISO 4) orque (max.) dment depth (80 tic spacing spacing	tion is not ixture 032)	M _{Rec} ategory 1) permitted d₀ h₀ ≥ d₁ SW T _{inst, max} h _{ef,min} h _{ef,max}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 64 9 13 10 edge dista 8 Steel 60 160 64 9	6.0 11.9 Illation I A4	8.6 21.1 20ta 5teel 1 1 8 1 1 17(2 4 membe 6 6 20(8	9.2 24.3 10 A4 2 0 2 16) 0 er thickno 10 A4 0 00 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 19(1 30 ess M1 Steel 70 24 90	13.7 13.7 42.1 2 A4 4 5 4 6 88	22.3 95.4 M Steel 1 1 12 1 1 2 6 6 M Steel 8 8 32 12 33	25.2 106.7 16 A4 8 28 8 8 28 8 4 4 00 16 A4 30 20 22	34.9 186.3 M Steel 2 10 2 2 10 2 2 3 3 9 9 4 10 5 teel 9 9 4 10 10 4 11 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 4 4 60 22 30 00 20 20 4 4 90 00 60 80 00	50.3 320.6 M Steel 2 1 9 2 2 3 3 1 4 Steel 10 4 8 Steel 10 5 7 7 12	56 35 24 A 8 92 6 6 6 40 24 A 00 30 92 76 20
Or Over Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation to Effective embee Effective embedi Characteris	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth ie hole of the fi IN 934 (ISO 4) orque (max.) dment depth (80 tic spacing spacing	tion is not ixture 032)	$\begin{array}{c c} & M_{Rec} \\ \hline \\ ategory 1) \\ permitted \\ \hline \\ d_0 \\ \hline \\ h_0 \geq \\ \hline \\ d_1 \\ \hline \\ SW \\ \hline \\ T_{inst, max} \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \hline \\$	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 10.8 10.9 10.9 10 64 9 13 10 64 9 13 10 64 10 60 160 64 192	6.0 11.9 Illation I A4	8.6 21.1 Data M Steel 1 1 17(2 17(2 17(2 17(2 17(2 2 17(2 17(2 17(2 17(2 17(17(2 17(17(17(17(17(17(17(17(17(17(9.2 24.3 10 A4 2 0 2 2 16) 0 2 16) 0 2 2 16) 0 2 2 16) 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 96 14 96 14 96 30 85 85 85 85 96 24 96 28	13.7 13.7 42.1 2 A4 4 5 4 6 18) 0 18) 0 18) 0 10 10 11 12 A4 0 10 10 10 11 12 12 13 14 15 16 17 18 10 10 10 10 10 10 11 12 13 14 15 16 17 18 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td>22.3 95.4 M Steel 1 1 12 2 1 1 2 6 6 M Steel 8 8 32 2 12 38 8 8</td> <td>25.2 106.7 16 A4 8 28 8 4 4 50 0 16 A4 30 20 28 84</td> <td>34.9 186.3 M Steel 2 10 2 2 10 2 2 3 3 9 9 4 10 5 teel 9 9 4 10 10 4 11 10 10 10 10 10 10 10 10 10 10 10 10</td> <td>39.4 207.9 20 4 4 60 22 30 00 22 20 44 90 00 00 60 80</td> <td>50.3 320.6 M Steel 2 1 9 2 2 3 3 1 4 Steel 10 4 8 Steel 10 5 7 7 12</td> <td>56 35 24 8 32 6 6 6 6 40 24 24 24 24 20 30 30 30 22 76</td>	22.3 95.4 M Steel 1 1 12 2 1 1 2 6 6 M Steel 8 8 32 2 12 38 8 8	25.2 106.7 16 A4 8 28 8 4 4 50 0 16 A4 30 20 28 84	34.9 186.3 M Steel 2 10 2 2 10 2 2 3 3 9 9 4 10 5 teel 9 9 4 10 10 4 11 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 4 4 60 22 30 00 22 20 44 90 00 00 60 80	50.3 320.6 M Steel 2 1 9 2 2 3 3 1 4 Steel 10 4 8 Steel 10 5 7 7 12	56 35 24 8 32 6 6 6 6 40 24 24 24 24 20 30 30 30 22 76
Or Ove Nominal drill f Cylindrical dril Diameter of clearence Width across flats D Installation to Effective embed Effective embedi Characteris Minimum	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth ie hole of the fi IN 934 (ISO 4) orque (max.) dment depth (80 tic spacing spacing edge distance	tion is not ixture 032)	M _{Rec} ategory 1) permitted d ₀ h ₀ ≥ d ₁ SW T _{inst, max}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 64 9 13 10 edge dista 8 Steel 60 160 64 9	6.0 11.9 Illation I A4	8.6 21.1 Data M Steel 1 1 17(2 M Steel 6 6 20(8 22 5	9.2 24.3 10 A4 2 0 2 2 16) 0 2 16) 0 2 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 4 14 96 14 96 14 96 14 96 30 28 55 8 55 96 70 24 96 28 66	13.7 13.7 42.1 2 A4 4 5 4 6 18 0 40 6 38 0 44	22.3 95.4 M Steel 1 1 12 1 1 2 6 6 M Steel 8 8 32 12 38 8 8 15	25.2 106.7 16 A4 8 28 8 4 4 60 60 16 A4 30 20 28 84 30	34.9 186.3 M Steel 2 10 2 2 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	39.4 207.9 20 4 4 60 22 30 00 20 20 4 4 90 00 60 80 00	50.3 320.6 Mi Steel 2 19 2 2 3 3 14 Steel 10 4 8 Steel 10 4 8 57 12 28	56 35 24 8 8 92 6 6 6 6 6 6 6 40 24 A 30 30 30 32 76
Dr Ov Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation to Effective embed Effective embeded Characteris Minimum Characteristic	C50/60 g Moment y or wet concre erhead installa iole diameter Il hole depth ie hole of the fi IN 934 (ISO 4 orque (max.) diment depth ment depth (8o tic spacing spacing edge distance ge distance	tion is not ixture 032)	M _{Rec} ategory 1) permitted d ₀ h ₂ ≥ d ₁ SW T _{inst, max}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 64 9 13 10 edge dista 8 Steel 60 160 60 192 40 90	6.0 11.9 Illation I A4	8.6 21.1 Data M Steel 1 1 17(2 3 M Steel 6 20 8 22 5 5 12	9.2 24.3 10 A4 2 0 2 16) 0 0 0 0 00	12.0 37.7 Steel 14 96 14 19(1 30 ess M1 Steel 70 24 90 28 60 61	13.7 13.7 42.1 2 A4 4 5 4 5 4 5 4 6 88 0 644	22.3 95.4 M Steel 1 1 12 1 1 2 6 6 M Steel 8 8 32 33 8 34 8 112 34 8 8 34 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25.2 106.7 16 A4 8 28 8 4 4 0 0 16 A4 30 20 28 84 30 20 28 84 30 92	34.9 186.3 M Steel 2 10 2 3 3 9 9 4 4 5 teel 9 9 4 4 10 4 4 10 2 4 10 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 4 4 22 30 22 30 30 30 30 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	50.3 320.6 M: Steel 2 19 2 2 3 3 14 5 2 3 3 14 5 7 5 7 12 5 7 12 2 8 12	56 35 24 A 8 22 6 6 6 6 6 6 40 22 40 24 A 00 30 92 76 20 38
Dr Ov Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation to Effective embede Effective embedel Characterist Minimum Characteristic	C50/60 g Moment y or wet concre erhead installa iole diameter Il hole depth ie hole of the fi IN 934 (ISO 4 orque (max.) diment depth ment depth (8o tic spacing spacing edge distance ge distance	tion is not ixture 032)	M _{Rec} ategory 1) permitted d₀ h₀ ≥ d₁ SW T_inst, max Mef.max hef.max hef.max Scr.N Smin C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]		6.0 11.9 Illation I A4 A4 A4 A4	8.6 21.1 Data M Steel 1 1 17(2 M M Steel 6 6 20(8 8 24 5 12 5 12 5 11	9.2 24.3 10 A4 2 0 2 2 16) 0 2 16) 0 2 2 16) 0 2 2 10 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 96 14 96 14 96 70 24 90 28 60 14 60 12	13.7 13.7 42.1 2 A4 4 5 4 5 4 5 4 6 88 0 644	22.3 95.4 M Steel 1 1 12 1 1 2 6 6 M Steel 8 8 32 33 8 34 8 112 34 8 8 34 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25.2 106.7 16 A4 8 28 8 4 4 00 16 A4 30 20 28 84 30 20 28 84 30 92 30	34.9 186.3 M Steel 2 10 2 3 3 9 9 4 4 5 teel 9 9 4 4 10 4 4 10 2 4 10 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 44 22 30 22 30 20 20 44 30 30 30 30 30 30 30 30 30 30 30 30 30	50.3 320.6 M: Steel 2 19 2 2 3 3 14 5 2 3 3 14 5 7 5 7 12 5 7 12 2 8 12	56 35 24 A 8 32 6 6 6 6 40 22 4 0 0 0 30 30 32 76 20 38 20
Dr Ovi Nominal drill f Cylindrical dril Diameter of clearence Width across flats D Installation to Effective embede Effective embedi Characterist Minimum Characteristic Minimum ed	C50/60 g Moment y or wet concre erhead installa iole diameter Il hole depth ie hole of the fi IN 934 (ISO 4 orque (max.) diment depth ment depth (8o tic spacing spacing edge distance ge distance	tion is not ixture 032)	M _{Rec} ategory 1) permitted d₀ h₀ ≥ d₁ SW T_inst, max Mef.max hef.max hef.max Scr.N Smin C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 64 9 13 10 edge dista 10 edge dista 10 Steel 0 edge dista 10 9 13 10 10 edge dista 10 Steel 10 10 100 9 100 10 100 10 100 10 100	6.0 11.9 Illation I A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	8.6 21.1 Data M Steel 1 1 8 1 1 17(2 4 M Steel 6 20 8 22 5 12 5 12 5 11 1 10 10 12	9.2 24.3 10 A4 2 0 2 2 16) 0 2 16) 0 2 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 96 14 96 14 96 14 96 14 96 14 97 28 60 14 90 28 60 14 60 12 pccedure	13.7 13.7 42.1 2 A4 4 5 4 5 4 5 4 6 88 0 644	22.3 95.4 M Steel 1 1 12 1 1 2 6 6 M Steel 8 8 32 33 8 34 8 112 34 8 8 34 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25.2 106.7 16 A4 8 28 8 4 4 00 16 A4 30 20 28 84 30 20 28 84 30 92 30	34.9 186.3 M Steel 2 10 2 3 3 9 9 4 4 5 teel 9 9 4 4 10 4 4 10 2 4 10 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 44 22 30 22 30 20 20 44 30 30 30 30 30 30 30 30 30 30 30 30 30	50.3 320.6 M: Steel 2 19 2 2 3 3 14 5 2 3 3 14 5 7 5 7 12 5 7 12 2 8 12	56 35 24 A 8 32 6 6 6 6 40 22 4 0 0 0 30 30 32 76 20 38 20
Dr Ov Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation te Effective embede Effective embedef Characterist Minimum Characteristic o Minimum ed Minimum mem	C50/60 g Moment y or wet concre erhead installa iole diameter Il hole depth e hole of the fi IN 934 (ISO 4 inque (max.) dment depth ment depth tic spacing spacing edge distance ge distance ber thickness e of the anchol	tition is not ixture 0 032) 0 1) 1 1) 1 1) 1 1	M _{Rec} ategory 1) permitted d₀ h₀ ≥ d₁ SW T_inst, max Mef.max hef.max hef.max Scr.N Smin C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 64 9 13 10 edge dista 10 edge dista 10 steel 0 edge dista 10 steel 10 edge dista 100 edge dista 100 edge dista 100 edge dista 100	6.0 11.9 Illation I A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	8.6 21.1 Data 5teel 1 1 8 1 1 17(2 4 membe 6 20 8 2 4 5 5 12 5 12 5 12 5 12 5 12	9.2 24.3 10 A4 2 0 2 2 16) 0 2 16) 0 2 16) 0 2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 96 14 96 14 96 14 96 70 24 91 28 60 14 90 28 60 14 90 28 60 12 Docedure time	13.7 13.7 42.1 2 A4 4 5 4 5 4 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 744 75 76 77 78 79 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	22.3 95.4 M Steel 1 1 12 6 6 M Steel 8 32 34 34 34 8 34 34 8 112 34 34 34 34 34 34 34 34 34 34 34 34 34	25.2 106.7 16 A4 8 28 8 4 00 16 A4 30 20 28 84 30 92 30 64 	34.9 186.3 M Steel 2 10 2 2 10 2 2 3 3 9 9 4 4 3 5 5 10 10 2 4 4 10 2 4 4 10 10 2 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 44 22 30 30 22 20 44 30 00 30 50 50 50 50 50 50 50 50 50 50 50 50 50	50.3 320.6 M: Steel 2 19 2 2 3 14 2 3 14 5 7 5 7 12 2 8 12 2 6 12 2 6 12 2 6 12 2 6 12 2 6 12 12 12 12 12 12 12 12 12 12 12 12 12	24 35 24 A 8 22 6 6 6 6 40 24 A 20 30 30 30 32 76 20 38 20 48 20 48 20 48 20 20 48 20 20 20 20 20 20 20 20 20 20
Dr Ov Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation te Effective embede Effective embedef Characterist Minimum Characteristic o Minimum ed Minimum mem	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth e hole of the fi IN 934 (ISO 4 prque (max.) dment depth ment depth (80 tic spacing spacing edge distance ge distance ber thickness	tition is not ixture 0 032) 0 1) 1 1) 1 1) 1 1	M _{Rec} ategory 1) permitted d₀ h₀ ≥ d₁ SW T_inst, max Mef.max hef.max hef.max Scr.N Smin C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 64 9 13 10 edge dista 10 edge dista 10 steel 0 edge dista 10 steel 10 edge dista 100 edge dista 100 edge dista 100 edge dista 100	6.0 11.9 Illation I A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	8.6 21.1 Data M Steel 1 1 8 1 1 17(2 4 membe 6 20 8 24 5 5 12 5 12 5 12 5 12 5 12 5 12 5 12	9.2 24.3 A4 2 0 2 2 16) 0 2 16) 0 2 16) 0 2 2 16) 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	12.0 37.7 Steel 14 96 14 96 14 96 14 96 14 96 70 24 91 28 60 14 90 28 60 14 90 28 60 12 Docedure time ncrete)	13.7 13.7 42.1 2 A4 4 5 4 5 4 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 744 75 76 77 78 79 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	22.3 95.4 Steel 1 1 1 2 6	25.2 106.7 16 A4 8 28 8 4 00 16 A4 30 20 28 84 30 92 30 64 	34.9 186.3 M Steel 2 10 2 2 10 2 2 3 3 9 9 4 4 3 5 5 10 10 10 2 4 4 10 10 2 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 44 22 30 30 22 20 44 30 00 30 50 50 50 50 50 50 50 50 50 50 50 50 50	50.3 320.6 M: Steel 2 19 2 2 3 14 2 3 14 5 7 5 7 12 2 8 12 2 6 12 2 6 12 2 6 12 2 6 12 2 6 12 12 12 12 12 12 12 12 12 12 12 12 12	24 24 24 24 24 24 20 20 20 20 20 20 20 20 20 20
Dr Ov Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation to Installation to Effective embede Effective embeder Characterist Minimum Characteristic Minimum ed Minimum mem Temperature	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth ie hole of the fi IN 934 (ISO 4 rque (max.) dment depth ment depth ic spacing spacing edge distance ge distance ber thickness e of the anchon T _{base material}	tition is not ixture 0 032) 0 1 1 1) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M _{Rec} ategory 1) permitted d₀ h₀ ≥ d₁ SW T_inst, max Mef.max hef.max hef.max Scr.N Smin C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 64 9 13 10 edge dista 60 Steel 60 100 64 90 130 edge dista 60 100 64 90 60 100 64 90 60 100 64 102 60 100 64 100 64 100 60 60 100 60 100 60 100 60 100	A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	8.6 21.1 Data M Steel 1 1 8 1 1 17(2 4 M Steel 6 20 8 24 5 12 5 12 5 12 5 12 5 12 5 12	9.2 24.3 10 A4 2 0 2 16) 0 2 16) 0 2 16) 0 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 2 2 16) 0 16) 16) 16) 16) 16) 16) 16) 16) 16) 16)	12.0 37.7 Steel 14 96 14 96 14 96 14 96 14 96 14 97 28 60 14 90 28 60 14 90 28 60 14 90 28 60 14 90 28 60 12 90 28 60 12 90 91 92 93 94 94 95 96 97 98 99 99 90 91 92 94 94 95 96 97 98 99 99 90 91 92 94 95	13.7 13.7 42.1 2 A4 4 5 4 5 4 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 88 0 6 744 75 76 77 78 79 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	22.3 95.4 M Steel 1 1 12 6 6 M Steel 8 32 34 34 34 8 34 34 8 112 34 34 34 34 34 34 34 34 34 34 34 34 34	25.2 106.7 16 A4 8 28 8 4 00 16 A4 30 20 28 84 30 92 30 64 	34.9 186.3 M Steel 2 10 2 2 10 2 2 3 3 9 9 4 4 3 5 5 10 10 10 2 4 4 10 10 2 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 44 22 30 30 22 20 44 30 00 30 50 50 50 50 50 50 50 50 50 50 50 50 50	50.3 320.6 M: Steel 2 19 2 2 3 14 2 3 14 5 7 5 7 12 2 8 12 2 6 12 2 6 12 2 6 12 2 6 12 2 6 12 12 12 12 12 12 12 12 12 12 12 12 12	24 24 24 24 24 24 20 20 20 20 20 20 20 20 20 20
Or Over Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation to Installation to Effective embede Effective embeder Characterist Minimum Characteristic Minimum	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth ie hole of the fi IN 934 (ISO 4 rque (max.) dment depth ment depth ic spacing spacing edge distance ge distance ber thickness ber thickness	tition is not ixture 0 032) 0 1 1 1) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M _{Rec} ategory 1) permitted d ₀ h ₀ ≥ d ₁ SW T _{inst, max} M _{ef.max} h _{ef.max} h _{ef.8d} S _{cr.N} S _{min} C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 0 64 9 13 10 10 edge dista 0 60 160 5teel 60 10 64 9 13 10 64 9 13 60 160 60 160 64 192 40 96 40 100 curing time (na) (incols) (na)	6.0 11.9 Illation I A4 A4 A4 S / Drill Curing tir dry conc t _{cure.dp} 90 min	8.6 21.1 Data M Steel 1 1 8 1 1 17(2 4 M Steel 6 20 8 22 5 12 5 12 5 12 5 12 5 11 hole cle ne rete) (9.2 24.3 10 A4 2 0 2 16) 0 2 16) 0 2 16) 0 2 16) 0 2 2 16) 0 16) 16) 16) 16) 16) 16) 16) 16) 16) 16)	12.0 37.7 Steel 14 96 14 96 14 96 14 96 14 96 14 97 28 60 14 90 28 60 14 90 28 60 12 00 20 00 90 28 60 12 00 28 60 12 00 90 28 60 12 00 12 00 12 00 12 14 15 16 17 1	13.7 13.7 42.1 2 A4 4 5 4 5 4 5 4 6 88 0 6 88 0 64 7 7 88 14 12 88 10 6 88 10 6 7 80 14 12 14 10 14 10 14 10 12 13 14 14 16 17 18 19 10 10 114 115 114 115 114	22.3 95.4 M Steel 1 1 12 6 6 M Steel 8 32 34 34 34 8 34 34 8 112 34 34 34 34 34 34 34 34 34 34 34 34 34	25.2 106.7 16 A4 8 28 8 4 00 16 A4 30 20 28 84 30 92 30 64 	34.9 186.3 M Steel 2 10 2 2 10 2 2 3 3 9 9 4 4 3 5 5 10 10 10 2 4 4 10 10 2 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 44 22 30 30 22 20 44 30 00 30 50 50 50 50 50 50 50 50 50 50 50 50 50	50.3 320.6 M: Steel 2 19 2 2 3 14 2 3 14 5 7 5 7 12 2 8 12 2 6 12 2 6 12 2 6 12 2 6 12 2 6 12 12 12 12 12 12 12 12 12 12 12 12 12	24 35 24 A 8 22 6 6 6 6 40 24 A 20 30 30 30 32 76 20 38 20 48 20 48 20 48 20 20 48 20 20 20 20 20 20 20 20 20 20
• Dr • Ov Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation to Effective embed Characterist Minimum Characteristic Minimum ed Minimum mem Temperature $0^{\circ}C \le T$ '+5°C $\le T$	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth e hole of the fi IN 934 (ISO 4 irque (max.) diment depth ment depth (80 tic spacing spacing spacing edge distance ge distance ber thickness ber thickness e of the anchor T _{base material}	tion is not ixture 0 032) 0 032) 0 032) 0 0 032) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M _{Rec} ategory 1) permitted d ₀ h ₀ ≥ d ₁ SW T _{inst, max} M _{ef.max} h _{ef.max} h _{ef.8d} S _{cr.N} S _{min} C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 0 64 9 13 10 10 edge dista 0 60 160 5teel 60 10 64 9 13 10 64 9 13 60 160 60 160 64 192 40 96 40 100 curing time (na) (incols) (na)	6.0 11.9 Illation I A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	8.6 21.1 Data Steel 1 8 1 1 17(2 1 membe 6 20 8 24 5 12 5 12 5 12 5 11 12 5 11 12 5 11 12 5 11 12 5 11 12 5 11 12 12 1 1 1 1	9.2 24.3 10 A4 2 0 2 2 16) 0 2 16) 0 2 2 16) 0 2 2 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 96 14 96 14 96 14 96 14 96 14 97 28 60 14 90 28 60 14 60 12 00 28 60 14 61 12 00 28 60 14 61 12 00 00 12 00 12 00 12 00 12 00 14 15 16 17 1	13.7 13.7 42.1 2 A4 4 5 4 5 4 5 4 6 88 0 6 88 0 64 7 7 88 14 12 88 10 6 88 10 6 7 80 14 12 14 10 14 10 14 10 12 13 14 14 16 17 18 19 10 10 114 115 114 115 114	22.3 95.4 M Steel 1 1 2 6 6 M Steel 8 3 3 1 2 3 8 3 1 2 3 8 8 1 1 2 6 6 1 1 2 6 6 1 1 2 6 6 1 1 2 1 1 2 6 6 1 1 2 2 6 6 1 1 2 2 6 6 1 1 2 2 6 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 1 2 1	25.2 106.7 16 A4 8 28 8 4 00 16 A4 30 20 28 84 30 92 30 64 eaning (M mm and	34.9 186.3 M Steel 2 10 2 10 2 3 3 9 M Steel 9 9 4 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 3 3 9 9 9 4 4 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 10 10 2 10 10 2 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 44 22 30 22 30 30 30 20 20 20 60 80 00 60 80 00 60 80 00 60 80 00 60 80 00 80 00 80 90 80 90 80 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	50.3 320.6 M: Steel 2 19 2 2 3 14 2 3 14 5 7 5 7 12 2 8 12 2 6 12 2 6 12 2 6 12 2 6 12 2 6 12 12 12 12 12 12 12 12 12 12 12 12 12	56 35 24 A 8 22 6 6 6 6 6 6 6 40 22 40 30 30 30 32 76 20 38 8 20 48
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth e hole of the fi IN 934 (ISO 4 irque (max.) dment depth ment depth ment depth tic spacing spacing edge distance ge distance ber thickness ber thickness e of the anchon T base material base material	tion is not ixture 032) 0 032) 0 032) 0 032) 0 0 032) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M _{Rec} ategory 1) permitted d ₀ h ₀ ≥ d ₁ SW T _{inst, max} M _{ef.max} h _{ef.max} h _{ef.8d} S _{cr.N} S _{min} C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 0 64 9 13 10 10 edge dista 0 60 160 5teel 60 10 64 9 13 10 64 9 13 60 160 60 160 64 192 40 96 40 100 curing time (na) (incols) (na)	6.0 11.9 Illation I A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	8.6 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21	9.2 24.3 10 A4 2 0 2 16) 0 2 16) 0 2 16) 0 2 16) 0	12.0 37.7 Steel 14 96 14 96 14 96 14 96 14 96 14 97 Steel 70 24 90 28 60 14 60 14 60 14 60 14 61 12 00 00 00 00 00 00 01 12 02 03 04 14 15 16 16 17 18 19 19 10 10 11 12 12 12 12 14 14 15 16 16 17 18 19 19 10<	13.7 13.7 42.1 2 A4 4 5 4 5 4 5 4 6 88 0 6 88 0 64 7 7 88 14 12 88 10 6 88 10 6 7 80 14 12 14 10 14 10 14 10 12 13 14 14 16 17 18 19 10 10 114 115 114 115 114	22.3 95.4 M Steel 1 1 2 6 6 M Steel 8 3 3 1 2 3 8 3 1 2 3 8 8 1 1 2 6 6 1 1 2 6 6 1 1 2 6 6 1 1 2 1 1 2 6 6 1 1 2 2 6 6 1 1 2 2 6 6 1 1 2 2 6 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 1 2 1	25.2 106.7 16 A4 8 28 8 4 00 16 A4 30 20 28 84 30 20 28 84 30 92 30 64 eaning (M mm and	34.9 186.3 M Steel 2 10 2 10 2 3 9 M Steel 9 4 4 10 20 10 10 20 10 10 10 10 10 10 10 10 10 1	39.4 207.9 20 44 22 30 30 30 20 20 40 30 30 30 30 30 30 30 30 30 30 30 30 30	50.3 320.6 M: Steel 2 19 2 2 3 14 2 3 14 5 7 5 7 12 2 8 12 2 6 12 2 6 12 2 6 12 2 6 12 2 6 12 12 12 12 12 12 12 12 12 12 12 12 12	56 35 24 A 8 22 6 6 6 6 6 6 6 40 22 40 30 30 30 32 76 20 38 8 20 48
• Dr • Ov Nominal drill f Cylindrical dri Diameter of clearence Width across flats D Installation to Effective embed Characteristic Minimum Characteristic of Minimum ed Minimum mem Characteristic of Minimum mem Characteristic of Minimum de Minimum mem	C50/60 g Moment y or wet concre erhead installa iole diameter II hole depth e hole of the fi IN 934 (ISO 4 irque (max.) diment depth ment depth (80 tic spacing spacing spacing edge distance ge distance ber thickness ber thickness e of the anchor T _{base material}	tion is not ixture 032) 0 032) 0 10 10 10 10 10 10 10 10 10 10 10 10 10	M _{Rec} ategory 1) permitted d ₀ h ₀ ≥ d ₁ SW T _{inst, max} M _{ef.max} h _{ef.max} h _{ef.8d} S _{cr.N} S _{min} C _{cr.N} C _{min} h _{min}	[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.1 10.9 Insta Steel 10 0 64 9 13 10 10 edge dista 0 60 160 5teel 60 10 64 9 13 10 64 9 13 60 160 60 160 64 192 40 96 40 100 curing time (na) (incols) (na)	6.0 11.9 Illation I A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	8.6 21.1 Data Steel 1 1 17(2 Immbe M: Steel 17(2 Immbe M: Steel 6 20 8 24 5 12 5 12 5 12 5 12 5 12 5 12 5 12 5 12 5 12 5 12 5 11 hole cle 1 1 1 1 1 1 1 1 1 1 1 1 <td>9.2 24.3 10 A4 2 0 2 16) 0 2 16) 0 2 2 16) 0 2 2 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>12.0 37.7 Steel 14 96 14 96 12 14 96 12 14 96 14 97 24 90 28 60 14 90 28 60 12 0cedure ime h h h h h h h</td> <td>13.7 13.7 42.1 2 A4 4 5 4 5 4 5 4 6 88 0 6 88 0 64 7 7 88 14 12 88 10 6 88 10 6 7 80 14 12 14 10 14 10 14 10 12 13 14 14 16 17 18 19 10 10 114 115 114 115 114</td> <td>22.3 95.4 M Steel 1 1 2 6 6 M Steel 8 3 3 1 2 3 8 3 1 2 3 8 8 1 1 2 6 6 1 1 2 6 6 1 1 2 6 6 1 1 2 1 1 2 6 6 1 1 2 2 6 6 1 1 2 2 6 6 1 1 2 2 6 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 1 2 1</td> <td>25.2 106.7 16 A4 8 28 8 4 00 16 A4 30 20 28 84 30 20 28 84 30 92 30 64 eaning (M mm and</td> <td>34.9 186.3 M Steel 2 10 2 10 2 3 3 9 M Steel 9 9 4 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 3 3 9 9 9 4 4 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 10 10 2 10 10 2 10 10 10 10 10 10 10 10 10 10</td> <td>39.4 207.9 20 44 22 30 30 30 20 20 40 30 30 30 30 30 30 30 30 30 30 30 30 30</td> <td>50.3 320.6 M: Steel 2 19 2 2 3 14 2 3 14 5 7 5 7 12 2 8 12 2 6 12 2 6 12 2 6 12 2 6 12 2 6 12 12 12 12 12 12 12 12 12 12 12 12 12</td> <td>A 8 92 6 6 6 7 40 224 A 700 30 92 7 7 6 20 38 8 20 48</td>	9.2 24.3 10 A4 2 0 2 16) 0 2 16) 0 2 2 16) 0 2 2 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0 37.7 Steel 14 96 14 96 12 14 96 12 14 96 14 97 24 90 28 60 14 90 28 60 12 0cedure ime h h h h h h h	13.7 13.7 42.1 2 A4 4 5 4 5 4 5 4 6 88 0 6 88 0 64 7 7 88 14 12 88 10 6 88 10 6 7 80 14 12 14 10 14 10 14 10 12 13 14 14 16 17 18 19 10 10 114 115 114 115 114	22.3 95.4 M Steel 1 1 2 6 6 M Steel 8 3 3 1 2 3 8 3 1 2 3 8 8 1 1 2 6 6 1 1 2 6 6 1 1 2 6 6 1 1 2 1 1 2 6 6 1 1 2 2 6 6 1 1 2 2 6 6 1 1 2 2 6 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 6 1 1 2 2 1 2 1	25.2 106.7 16 A4 8 28 8 4 00 16 A4 30 20 28 84 30 20 28 84 30 92 30 64 eaning (M mm and	34.9 186.3 M Steel 2 10 2 10 2 3 3 9 M Steel 9 9 4 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 10 2 2 2 3 3 9 9 9 4 4 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 2 10 10 2 10 10 2 10 10 2 10 10 10 10 10 10 10 10 10 10	39.4 207.9 20 44 22 30 30 30 20 20 40 30 30 30 30 30 30 30 30 30 30 30 30 30	50.3 320.6 M: Steel 2 19 2 2 3 14 2 3 14 5 7 5 7 12 2 8 12 2 6 12 2 6 12 2 6 12 2 6 12 2 6 12 12 12 12 12 12 12 12 12 12 12 12 12	A 8 92 6 6 6 7 40 224 A 700 30 92 7 7 6 20 38 8 20 48

Fixings For Chemical Anchor Systems M Contents

~

Threaded Rod – LMAS


LMAS threaded rods are intended to be used in conjunction with ATHP300BG-UK and ATHP420BG-UK resin.

Features:

- Zinc plated LMAS threaded rods are supplied with nuts & washers
- Available in M10 to M16

Material:

Fixings For Chemical Anchor Systems • Zinc Plated Steel: Grade 5.8

Product Dimensions

		Bolt Dimensions			Fixture & Hole Dimensions [mm]						
Model No.	Code	[mm]		Max Fixture Thickness	Max hole diameter within Fixture	Embedment Depth	Drilled Hole Size				
		Diameter	I	t _{fix}	d _f	h _{ef}	d _o x h _o				
M10x130	LMAS1012090025	M10	130	25	12	90	12 x 90				
M10x150	LMAS1016085050	M10	150	50	12	85	12 x 85				
M12x150	LMAS1214100035	M12	150	35	14	100	14 x 100				
M12x185	LMAS1214100070	M12	185	70	14	100	14 x 100				
M16x170	LMAS1618130020	M16	170	20	18	130	18 x 130				
M16x200	LMAS1618130050	M16	200	50	18	130	18 x 130				

Resin Dispensing Tool - DT300, DT380

Dispensing tool allows effortless installation of ATHP300BG-UK and ATHP420BG-UK resin.

Installation: The DT300 dispensing tool is suitable for the 300ml cartridges and the DT380 dispensing tool is suitable for the 420ml cartridges.

Key Features:

36

- Dispensing tool for 300 ml and 420 ml cartridge
- Unlike ordinary cartridge guns, the DT300 and DT380 are machined to cope with the heavier duty demands of concrete resins, dispensing smoothly with less effort
- Ergonomically designed for easier dispensing of the resin and better handling

Product Dimensions

Model No.	Description
DT300	300 ml Cartridge
DT380	420 ml Cartridge

C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC

Hold Downs and Tension Ties

Contents

M

Hold Downs - **S/HD8S / S/HD10S** Tension Ties - **DTT / HTT / LTT**

Hold Downs - S/HD8S / S/HD10S

SIMPSON Strong-Tie

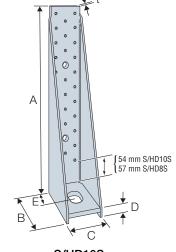
The S/HD series of holdowns are designed to connect the building structure to the foundation. Connection to the stud is with screws. When connecting with a back to back detail, fasteners must be specified by the designer. In a back to back installation, the binding members enable the two sections to act as one.

Material: Galvanised Mild Steel: 275g/m²,

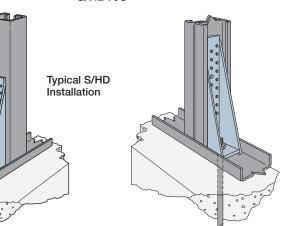
Installation: Use the specified number of fasteners to attach the strap portion of the tie to the light gauge steel stud.

Connect the base to the wall or foundation with a suitable anchor; see performance table for fastener type and required bolt diameter.

Key Features:


- The S/HD8S uses a maximum of 17 fasteners and the S/HD10S uses a maximum of 22 fasteners
- Designed to utilize fewer fasteners for reduced installation times

LMAS


E1B1414B

ATHP

X1224D540

S/HD10S

Product Dimensions

			Hanger Dime	ensions [mm]		Holes			
Model No.			Hunger Dime			Flan	Flange B		
Model No.	А	В	C	D	E	t	Ø6.4	Ø14.3	Ø24x28
S/HD8S	279	86	52	22	38	3.4	19	2	1
S/HD10S	343	86	52	22	38	3.4	24	2	1

Performance Values

	Fla	Faster		ge B		Member		/orking s [kN]	Characteristic Capacities [kN]		
Model No.	Stud (E1B1414B)	Steel Section (X1224D540)	Ancho	or Bolt	Installation	Thickness [mm]	R _{2,SWL,ST}	Deflection at Load [mm]	R _{2,k}	Deflection at Load [mm]	
	Qty	Qty	Qty	Ø [mm]							
	17	-	1	22	Back to Back Studs	1.2	38.9	2.2	62.2	3.7	
S/HD8S	17	-	1	22	Back to Back Studs	1.6	39.4	2.7	62.9	4.1	
	-	17	1	22	Steel Section	-	48.2	1.3	77.1	1.8	
	22	-	1	22	Back to Back Studs	1.2	49.5	2.8	79.0	3.1	
S/HD10S	22	-	1	22	Back to Back Studs	16	54.4	2.4	86.8	3.7	
	-	22	1	22	Steel Section	-	55.0	1.1	88.2	1.5	

1. The engineer or designer shall be responsible for specifying suitable anchor type, embedment and configuration

2. Deflection at Load includes fastener slip, holdown deformation and anchor rod elongation for holdowns installed up to 100mm above top of concrete. Holdowns may be installed raised, up to 450mm above top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for.

3. For instances where the S/HDS holdowns are installed onto steel sections with material thickness greater than 8mm, use S1224D540 screws (suitable for use on RSJ or steel sections upto 12.5mm thick)

4. Not all fastener holes for S/HDS holdowns need to be filled, as additional fastener holes provided. Install fasteners symmetrically.

Hold Downs and Tension Ties

38

Tension Ties – DTT / HTT / LTT

SIMPSON Strong-Tie

Δ

В

LTT

Typical HTT5

Installation

С

Α

B

HTT

A

Typical

DTT1Z Installation

00

å

0

F

 F_2

DTT1Z

The DTT, HTT and LTT tensions ties are ideal for retrofit or new construction projects. They provide high strength, post pour, light gauge steel to concrete connections.

Material: Galvanised Mild Steel: HTT & LTT – 275g/m², DTT – 565 g/m²

Installation: Use the specified number of fasteners to attach the strap portion of the tie to the light gauge steel stud.

Connect the base to the wall or foundation with a suitable anchor; see performance table for fastener type and required bolt diameter.

Key Features:

- The DTT and HTT are single piece formed tension ties with the HTT having a 4-ply formed seat that eliminates the need for any washers
- LTT incorporates a load transfer plate which means no additional washers are required

Product Dimensions

	-	Ha	anger Dime	ensions (m	m]		Holes Elange P							
Model No.									Flange A				Flange B	
-	Α	В	C	D	E	t	Ø4.3	Ø4.7	Ø5.0	Ø14.0	Tri	Ø11	Ø17.5	Ø21.0
DTT1Z	180	37	38	7	19	2.0	6	-	-	-	2	1	-	-
HTT4	314	60	64	11	35	2.8	-	18	-	-	-	-	1	-
HTT5	406	56	64	11	35	2.8	-	26	-	-	-	-	1	-
LTT20B	508	74	51	7	35	2.5	-	-	10	2	-	-	-	1

`~

0

0

0

0

0

Performance Values

		Fasteners				Safe Working L	.oads [kN]	Characteristic Capacities [kN]		
Model No.	Flange A Stud (X34B1016)		nge B nor Bolt	Installation	Member Thickness [mm]	R _{2,SWL,ST}	Deflection at Load [mm]	R _{2,K}	Deflection at Load [mm]	
	Qty	Qty	Ø [mm]							
DTT1Z	6	1	10	Single Stud	1.2	4.0	4.0	5.6	6.4	
HTT4	18	1	16	Single Stud	1.2	14.1	2.6	21.2	4.7	
П114	18	1	10	Back to Back Stud	1.2	19.5	3.2	29.7	6.4	
		1	16	Single Stud	1.2	18.9	3.2	28.9	6.4	
HTT5	26			Back to Back Stud	1.2	20.8	3.2	31.0	6.4	
				Single Stud	1.6	18.5	3.2	28.6	6.4	
LTT20B	LTT20B 8 1 20		Single Stud	1.2	5.3	3.2	8.4	6.4		

1. Performance values are based upon tests completed by Simpson Strong-Tie U.S. in accordance to ICC-ES AC261 – Acceptance criteria for connectors used with Cold-Formed Steel Structural Members

2. Deflection at Load is the deflection of the holdown measured between the anchor bolt and the strap portion of the holdown when loaded to the stated tension load 3. The engineer or designer shall be responsible for specifying suitable anchor type, embedment and configuration

Levelling Systems

(CLO

Contents

 \mathbf{O}

67

× x

Levelling System - TFLS

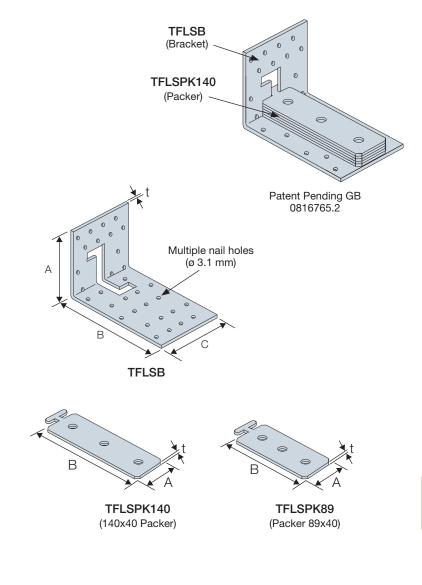
Levelling System – TFLS

The TFLS provides the combined function of levelling and fixing an LGS frame system sole plate to a foundation or sub-structure. It comprises a universal bracket and packing pieces which can be added or removed as required. The system transfers vertical and lateral loads from the wall to the foundation.

 $\label{eq:Material:Galvanised Mild Steel: 275 g/m^2} \label{eq:Material:Galvanised Mild Steel: 275 g/m^2}$

Features:

- Adaptable accomodates structural packing up to 30mm deep
- Universal suitable for walls widths from 89mm to 140mm
- Flexible packing pieces can easily be added or removed from the base plate to achieve the required depth
- Structural satisfies requirements for permanent structural packing of the sole plate when installed at load points
- Multiple nail holes in bracket offer a variety of nailing points


Standard Installation: Starting at the highest point of the foundation slab, position and install the TFLS bracket, including one packer underneath the base track.

Position and install a second TFLS bracket at one end of the base track and level to the first by adding packers to the second TFLS bracket. If necessary, install a third TFLS at the other end of the base track and level to the first.

Infill between TFLS brackets with additional brackets. Level by adding packers as necessary to each bracket. Ideally position infill brackets under load points (stud positions) at centres specified by the engineer/building designer.

Repeat the process around the rest of the building. Once the ground floor walls are in situ, install packers under the load points not supported by a TFLS bracket.

Alternative Installation: Can also be installed to ensure mortar bedding is level between 2 or more brackets - using the packers provided.

Product Dimensions - Bracket

C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC

Model No.	H	langer Dime	ensions (mm	1]	Holes				
Model No.					Flange A		Flange B		
	Α	В	С	t	Ø3	Ø8	Ø3	Ø8	
TFLSB	89	140	80	1	11	1	19	1	

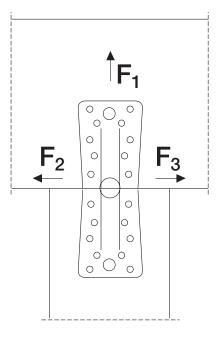
Product Dimensions - Packers

Model No.	Hange	s [mm]	Holes	
	Α	В	t	Ø8
TFLSPK89	39	89	2	3
TFLSPK140	39	140	2	4

Angle Brackets

Contents

 \bigcirc


1

Skewable Angles - LS.	.44
Jack Tuss and Rafter Connector - TJC	.45
Angle Brackets - E5 / ES	.46
Angle Brackets - EFIXR	.47
Angle Brackets AE	.48
Angle Brackets - ABR	.49
Angle Brackets - E9 / E9S	.50
Bypass Frame Fixed Clip Connector - FCB	
Slotted Truss / Joist Clips - STC / DTC	

Introduction

Definition of Force Directions

 F_1 = Uplift, applied in line with the angle bracket.

 F_2 / F_3 = Lateral load, applied perpendicular to the connection.

Basis of Design

The capacities stated in this document are un-modified characteristic capacities $R_{\rm k}.$ The design capacities are obtained according to the following formula:

$$\mathsf{R}_{\text{design}} = -\frac{\mathsf{R}_k}{\gamma_m}$$

If combined forces are applied to the angle brackets, the following checks must be satisfied:

 F_1 combined with F_2 or F_3 :

$$\left(\frac{F_{1,d}}{R_{1,d}}\right) + \left(\frac{F_{2or3,d}}{R_{2or3,d}}\right) \leq 1$$

Bending Capacities

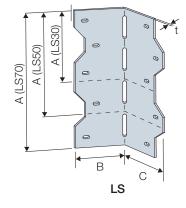
The angle brackets are typically produced from steel grade S 250 GD except for ABR10525, which are made from S350 in accordance with standard EN 10346 with the characteristic lower yielding strength of 250 MPa or 350 MPa and a lower ultimate tensile strength of 330 MPa or 420MPa respectively.

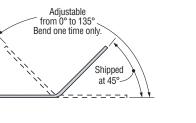
Some of the angle brackets have embossed ribs which considerably increase the bending capacity of the brackets. In such cases bending tests have been performed in accordance with ETAG 015:2012, clause 2.4.1.1.2.3.4.

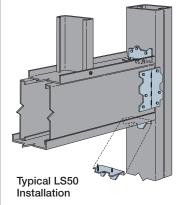
The characteristic bending capacities of angle brackets without ribs can be determined by calculation as prescribed in the Eurocodes.

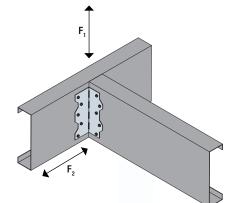
Skewable Angles - LS

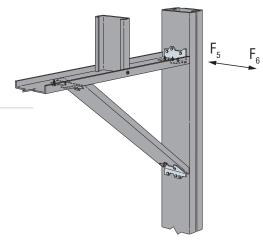
LS skewable angles are a cost effective method for connecting roof sections to hip sections, and because they are on-site adjustable, they can be used for connecting angled LGS sections too.


Material: Galvanised Mild Steel: 275 g/m²


Installation: Use the specified number of fasteners (see performance table for fastener type).


On-site skewable; bend one time only.


Key Features:


- Multiple screw hole locations to allow for easy installation
- Site adjustable from 0° 135°

Product Dimensions

	. u	anger Dime	Holes				
Model No.	П	anger Dime		nj	Flange B	Flange C	
	Α	В	C	t	Ø4x7 Obround	Ø4x7 Obround	
LS30	85	55	55	1.3	3	3	
LS50	124	55	55	1.3	4	4	
LS70	162	55	55	1.3	5	5	

Performance Values

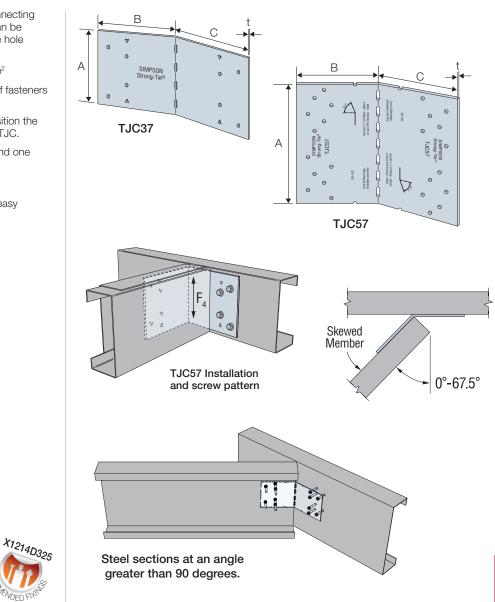
	Faste	eners	Safe Working Loads [kN] Member Thickness [mm]					Characteristic Capacities [kN] Member Thickness [mm]						
Model No.	Flange B	Flange C		1.2			1.4		1.2			1.4		
	Qty (X1214D325)	Qty (X1214D325)	R _{1,SWL}	R _{2,SWL}	R _{4,SWL}	R _{1,SWL}	R _{2,SWL}	R _{4,SWL}	R _{1,k}	R _{2,k}	R _{4,k}	R _{1,k}	R _{2,k}	R _{4,k}
LS30	3	3	1.4	0.4	1.6	2.7	-	2.2	2.2	0.6	2.6	4.3	-	3.6
LS50	4	4	3.0	0.4	1.6	3.3	0.5	2.2	4.8	0.6	2.6	5.3	0.8	3.6
LS70	5	5	3.4	0.5	2.6	4.9	0.5	3.2	5.4	0.8	4.1	7.8	0.8	5.1

1) Loads are for one party only.

Jack Truss and Rafter Connector – TJC

On-site adjustable angle brackets for connecting angled LGS sections, the TJC bracket can be adjusted from 0 to 67.5 degrees. Multiple hole locations assist with on-site installation.

Material: Galvanised Mild Steel: 275 g/m²


Installation: Use the specified number of fasteners (see performance table for fastener type).

With the TJC installed on the header, position the skewed member on the bend line of the TJC.

Bend the TJC to the desired position (bend one time only). Fix in place.

Key Features:

- Multiple screw hole locations allow for easy installation
- Site adjustable from 0° 67.5°

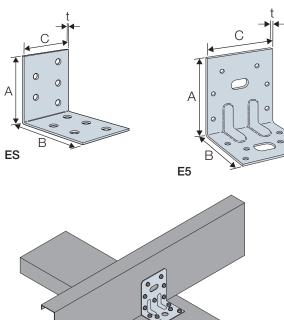
Product Dimensions

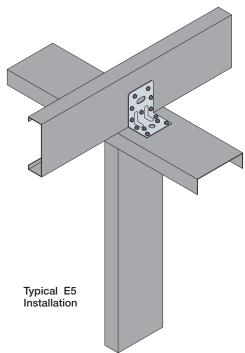
Model No.		Hanger Dime	ensions [mm]		Holes Flange B	Holes Flange C
	A	В	С	t	Ø3.75	Ø3.75
TJC37	79	89	89	1.6	6	6
TJC57	130	89	89	1.6	12	12

Performance Values

	Faste	eners	Header	Safe V	Vorking Loads	[kN]	Characteristic Capacities [kN]			
Model No.	Flange B	Flange C	Thickness		R _{4,k}		R _{4,k}			
	Qty (X1214D325)	Qty (X1214D325)	[mm]	Skew 0°	Skew 1° - 60°	Skew 61° - 67.5°	Skew 0°	Skew 1° - 60°	Skew 61° - 67.5°	
TJC37	4	4	1.2	2.9	2.5	2.1	4.7	4.0	3.4	
13037	6	6	1.2	3.0	2.8	2.4	4.8	4.5	3.8	
TJC57	8	8	1.2	5.8	5.4	5.5	9.2	8.6	8.8	
10007	8	8	1.6	8.0	8.0	8.0	12.7	12.7	12.7	

Angle Brackets – E5 / ES


Angle brackets make an effective ergonomic connection from an LGS channel section to an LGS stud section, with features like the embossed ribs considerably increasing the bracket's bending capacity.


Material: Galvanised Mild Steel: 275 g/m²

Installation: Position angle bracket in place. Fix with appropriate number of fasteners.

Key Features:

- Reinforcing ribs provide enhanced performance
- Multiple screw hole locations allow for easy installation

Product Dimensions

Angle Brackets

		Hangor Dime	ensions [mm]		Holes					
Model No.		nanger Dime			Flan	ge A	Flange B			
	Α	В	C	t	Ø5	Ø11x22	Ø5	Ø11x22		
E5/2C50	77	50	65	2	7	1	6	1		

Product Dimensions

Model No.		Hanger Dime	Holes Flange A	Holes Flange B		
	А	В	C	t	Ø5	Ø5
ES10/40C50	60	60	40	2.5	5	5

Bending Capacities

	Charateristic Bending Capacities				
Model No.	Lever Arm 'x' [mm]	M _{R.k} [kNmm]			
E5/2C50	0 ≤ x ≤ 27.3	56 - 3.47x			
L0/2000	27.3 ≤ x	8.3			

Bending Capacities

	Characteristic Bending Capacities				
Model No.	Lever Arm 'x' [mm]	M _{e.k} [kNmm]			
ES10/40C50	$0 \le x \le 6$	13.7			

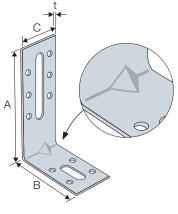
1) 1 Bracket per connection

2) No Rotation allowed

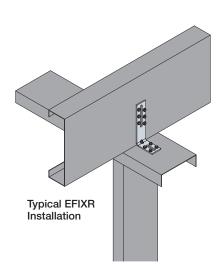
1) 1 Bracket per connection

2) No Rotation

Angle Brackets – EFIXR


Angle brackets make an effective ergonomic connection from an LGS channel section to an LGS stud sections, with features like the embossed ribs considerably increasing the bracket's bending capacity.

Material: Galvanised Mild Steel: 275 g/m²


Installation: Position angle bracket in place. Fix with appropriate number of fasteners.

Key Features:

- Reinforcing ribs provide enhanced performance
- Multiple screw hole locations allow for easy installation
- Slots allow for a temporary fix and adjustment of the position of the bracket before final installation

EFIXR

Product Dimensions

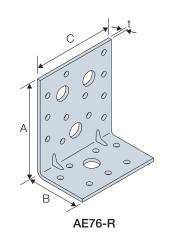
		Hongor Dimo	noiono [mm]		Holes				
Model No.	Hanger Dimensions [mm]				Flange A		Flange B		
	А	В	C	t	Ø5	Ø6.5x65	Ø5	Ø8.5x30	
EFIXR1053C50	98	52	30	2.5	6	1	4	1	
EFIXR1253C50	117	52	30	3	6	1	4	1	

Bending Capacities

C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

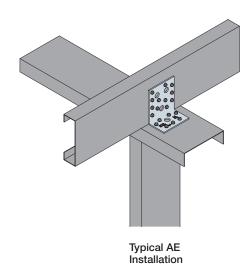
	Characteristic Bending Capacity Flange B				
Model No.	Lever Arm 'x' [mm]	M _{ß,k} [kNmm]			
EFIXR1053C50	$0 \le x \le 52$	4.5			
EFIXR1253C50	$0 \le x \le 52$	6.5			

Angle Brackets – AE


Angle brackets make an effective ergonomic connection from an LGS channel section to an LGS stud sections, with features like the embossed ribs considerably increasing the bracket's bending capacity.

Material: Galvanised Mild Steel: 275 g/m²

Installation: Position angle bracket in place. Fix with appropriate number of fasteners.


Key Features:

- Reinforcing ribs provide enhanced performance
- Multiple screw hole locations allow for easy installation

SIMPSON

Strong-Tie

Product Dimensions

		Hongor Dimo	ncione [mm]	Holes				
Model No.	Hanger Dimensions [mm]				Flange A		Flange B	
	А	В	C	t	Ø5	Ø13	Ø5	Ø13
AE76-R	90	48	76	3	12	3	7	1

Bending Capacities

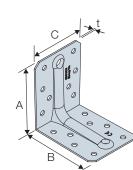
	Bending Capacities				
Model No.	Lever Arm 'x' [mm]	Characteristic Bending Capacity [kNmm]			
AE76-R	$0 \le x \le 10.9$	90 - 5.64 x			
AE70-K	10.9 ≤ x	28.7			

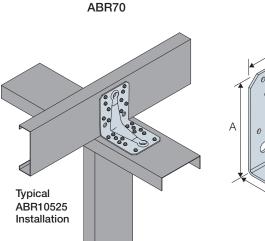
1) 1 Bracket per connection

2) No Rotation allowed

Angle Brackets

Angle Brackets – ABR


Angle brackets make an effective ergonomic connection from an LGS channel section to an LGS stud section, with features like the embossed ribs considerably increasing the bracket's bending capacity.


Material: Galvanised Mild Steel: 275 g/m²

Installation: Position angle bracket in place. Fix with appropriate number of fasteners.

Key Features:

- Reinforcing ribs provide enhanced performance
- Multiple screw hole locations allow for easy installation

0

l

R

А

ABR10525

Angle Brackets

FPHSD34S1214

Product Dimensions

Hanger Dimensione [mm]					Holes					
Model No.	Hanger Dimensions [mm]				Flange A			Flange B		
	А	В	C	t	Ø5	Ø8.5	Ø11	Ø5	Ø8.5	Ø14
ABR70	70	70	55	2	6	1	-	6	1	-
ABR9020	88	88	65	2	10	-	1	10	-	1
ABR10525	105	105	90	2.5	10	-	1	14	-	1

Performance Values

	Faste	eners				s [kN] Characteristic Loads [kN]			Olin Madalaa
Model No.	Flange A	Flange B	Member Thickness					Slip Modulus F ₁	Slip Modulus $F_2 = F_3$
	Qty (FPHSD34S1214)	Qty (FPHSD34S1214)	[mm]	R _{1,SWL}	$\mathbf{R}_{2,SWL} = \mathbf{R}_{3,SWL}$	R _{1,k}	$\mathbf{R}_{2,k} = \mathbf{R}_{3,k}$	[kNmm]	[kNmm]
ABR10525	10	14	1.2	4.3	7.0	6.8	11.2	0.6	2.8
ADN 10020	10	14	1.6	5.1	8.6	8.2	13.8	0.7	3.8

Bending Capacities

Characteristic Bending Capacity Flange B					
Model No. Lever Arm 'x' [mm]		M _{B,k} [kNmm]			
	$10 \le x \le 27.5$	613-14.26x			
ABR10525	$27.5 \le x \le 57.4$	343-4.43x			
	57.4 ≤ x	88.8			

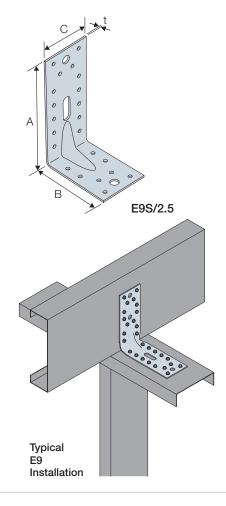
Bending Capacities

Characteristic Bending Capacity Flange B					
Model No.	Lever Arm 'x' [mm]	M _{R,k} [kNmm]			
	$0 \le x \le 28$	150-3.13x			
ABR9020	$28 \le x \le 42$	108-1.61x			
	$42 \le x$	41.0			

Bending Capacities

Characteristic Bending Capacity Flange B					
Model No.	M _{R,k} [kNmm]				
	$0 \le x \le 28.8$	139-3.97x			
ABR70	$28.8 \le x \le 44$	41-0.56x			
ADN/U	$44 \le x \le 62.5$	29-0.29x			
	62.5 ≤ x	10.6			

Angle Brackets - E9 / E9S


Angle brackets make an effective ergonomic connection from an LGS channel section to an LGS stud sections, with features like the embossed ribs considerably increasing the bracket's bending capacity.

Material: Galvanised Mild Steel: 275 g/m²

Installation: Position angle bracket in place. Fix with appropriate number of fasteners.

Key Features:

- Reinforcing ribs provide enhanced performance
- Multiple screw hole locations allow for easy installation

Angle Brackets

		Hongor Dim	ensions [mm]		Holes								
Model No.		naliyer Dillie			Flan	ge A	Flange B						
	А	В	C	t	Ø5	Ø11	Ø5	Ø11	Ø11x22.5				
E9/2,5	154	153	65	2.5	14	2	14	1	1				
E9S/2,5	94	153	65	2.5	8	1	14	1	1				

Performance Values

_												•
	-	Fasteners		Member	Safe Working Loads [kN]			istic Loads N]		Slip Modulus	Characteristic I Flai	Bending Cap nge B
1	Model No.	Flange A	Flange B	Thickness						$F_2 = F_3$	Lever Arm	
		Qty (FPHSD34S1214)	Qty (FPHSD34S1214)	[mm]	R _{1,SWL}	$\mathbf{R}_{2,SWL} = \mathbf{R}_{3,SWL}$	R _{1,k}	$\mathbf{R}_{2,k} = \mathbf{R}_{3,k}$	[kNmm]	[kNmm]	'x' [mm]	M _{r,k} [kNmm
	50/0 F	14	14	1.2	2.6	4.2	4.1	6.7	0.3	1.9	$0 \le x \le 36.6$	236 - 5.
	E9/2,5	14	14	1.6	3.4	5.2	5.4	8.3	0.6	2.1	36.6 ≤ x	21.5
	E9S/2,5	8	14	1.2	3.3	5.9	5.3	9.5	0.4	3.0	$0 \le x \le 36.6$	236 - 5.
		8	14	1.6	3.8	5.6	6.0	9.0	0.5	2.7	$36.6 \le x$	21.5

Bending Capacities

Characteristic Bending Capacity Flange B										
Lever Arm 'x' [mm]	M _{s,k} [kNmm]									
$0 \le x \le 36.6$	236 - 5.5x									
$36.6 \le x$	21.5									
$0 \le x \le 36.6$	236 - 5.5x									
$36.6 \le x$	21.5									

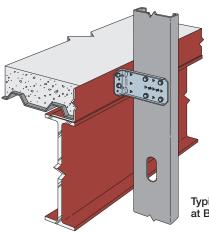
50

Bypass Frame Fixed Clip Connector – FCB

The FCB clip is an ergonomic, high-performing, fixed-clip connector that can be used for a variety of framing applications. It is rated for tension, compression and shear loads and offers the designer the flexibility of specifying different screw & anchorage patterns that conform to desired load levels.

Material: Galvanised Mild Steel: 275 g/m²

Installation:


- Use the specified type and number of fasteners (see performance table for fastener type)
- Use the specified number of self-drilling screws when connecting to LGS framing

Key Features:

- Rated for tension, compression and shear loads
- Allows design flexibility with varying screw and anchorage patterns to achieve different load requirements
- Strategically spaced stiffeners, embossments & anchor holes maximise connector performance

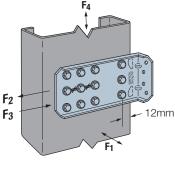
Typical FCB Installation at Bypass Framing

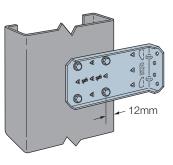
SIMPSON

Strong-Tie

Product Dimensions

		Hon goy Dime	unciono [mm]	Holes						
Model No.		Hanger Dime	ensions [mm]		Flange A	Flange B				
	А	В	C	t	Ø5.5	Ø4.8	Tri			
FCB43.5-R25	38	89	100	1.6	4	4	2			
FCB45.5-R25	38	140	100	1.6	4	4	5			
FCB47.5-R25	38	191	100	1.6	4	4	8			
FCB49.5-R25	38	241	100	1.6	4	4	8			
FCB411.5-R25	38	292	100	1.6	4	4	8			

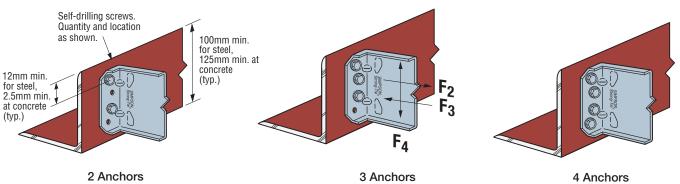

Bypass Frame Fixed Clip Connector – FCB



	Fas	Fasteners				Safe Working Loads [kN]					Characteristic Capacities [kN]							
		Flange B			Mem	ber Thio	ckness	[mm]			Member Thickness [mm]							
Model No.		Ű	1.2				1.6			1.2				1.6				
	Min/Max	Self Drilling Screw (X1B1214)	R ₁	R ₂	R ₃	R ₄	R ₁	R ₂	R ₃	R ₄	R ₁	R ₂	R ₃	R ₄	R ₁	R ₂	R ₃	R ₄
FCB43.5-R25	Min	4	0.9	4.9	4.3	5.0	1.5	5.6	4.3	6.6	1.5	7.9	6.9	8.0	2.5	8.9	6.9	10.6
F6D43.3-h23	Max	6	1.2	4.9	5.6	6.5	1.5	5.6	7.7	8.5	1.9	7.9	9.0	10.4	2.5	8.9	12.3	13.6
FCB45.5-R25	Min	4	0.8	4.9	4.3	4.2	1.5	4.9	4.3	5.9	1.3	7.9	6.9	6.7	2.5	7.9	6.9	9.4
F6D40.0-h20	Max	9	0.9	4.9	5.6	6.6	1.5	4.9	7.7	8.6	1.5	7.9	9.0	10.6	2.5	7.9	12.3	13.7
FCB47.5-R25	Min	4	0.6	4.9	4.2	1.5	1.2	4.9	4.2	1.6	1.0	7.9	6.7	2.3	1.9	7.9	6.7	2.6
F6047.0-h20	Max	12	1.2	4.9	5.6	4.7	1.5	4.9	7.7	6.4	1.9	7.9	9.0	7.5	2.5	7.9	12.3	10.3
FCB49.5-R25	Min	4	0.5	4.9	4.2	1.1	0.5	4.9	4.2	1.6	0.8	7.9	6.7	1.8	0.8	7.9	6.7	2.6
FGB49.5-K25	Max	12	1.2	4.9	5.6	5.0	1.5	4.9	7.7	5.3	1.9	7.9	9.0	7.9	2.5	7.9	12.3	8.5
FCB411.5-R25	Min	4	0.4	4.9	4.1	0.9	0.4	4.9	4.1	1.6	0.6	7.9	6.5	1.5	0.6	7.9	6.5	2.6
	Max	12	1.2	4.9	5.6	3.8	1.5	4.9	7.7	3.8	1.9	7.9	9.0	6.1	2.5	7.9	12.3	6.1

Min. fastener quantity and load values — fill all round holes; max. fastener quantity and load values — fill all round and triangular holes.
 Loads are based on clip capacity only and do not consider anchorage. The capacity of the system will be the minimum of the tabulated

value and the FCB Anchorage Loads.



Max. Fasteners

Min. Fasteners

Anchorage Values - FCB to Structure

			Safe Working Anchorage Loads (kN)								Characteristic Anchorage Loads (kN)								
	Anchor Fixing Qty		R _{4,SWL}							R _{4,k}									
wouer no.		Fixing Qty R _{2,SWL =}	FCB43.5	FCB45.5	FCB	47.5	FCB	49.5	FCB	411.5	2,K = 3,K	FCB43.5	FCB45.5	FCB	47.5	FCB	49.5	FCB4	111.5
		**3,SWL3	Min/Max	Min/Max	Min	Мах	Min	Мах	Min	Мах		Min/Max	Min/Max	Min	Мах	Min	Мах	Min	Мах
Min 5.0mm thick Steel	2	5.0	2.8	1.8	1.1	2.0	0.8	1.2	0.5	0.8	7.9	4.4	2.9	1.8	3.2	1.3	1.9	0.9	1.4
Self Drilling Screw	3	7.3	3.1	2.0	1.2	2.2	0.9	1.3	0.6	0.9	11.7	4.9	3.2	2.0	3.5	1.4	2.1	1.0	1.5
(XLQ114B1224)	4	9.9	5.6	3.6	1.6	4.0	1.6	2.4	1.2	1.7	15.9	8.9	5.8	2.6	6.3	2.5	3.8	2.0	2.7
C20 Concrete	2	1.7	1.8	1.4	0.9	1.4	0.6	0.9	0.6	0.7	2.7	3.0	2.2	1.4	2.2	1.0	1.5	1.0	1.1
Titen Screws (TTN25134H)	3	2.3	2.1	2.1	1.3	2.1	0.9	1.4	0.9	1.0	3.7	3.3	3.3	2.1	3.3	1.5	2.2	1.5	1.6
	4	3.0	2.9	2.8	1.7	2.8	1.2	1.8	1.2	1.3	4.8	4.6	4.5	2.8	4.5	2.0	2.9	2.0	2.1

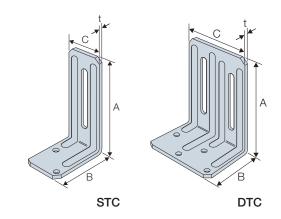
SIMPSON

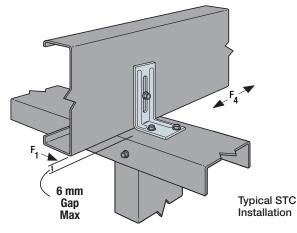
Strong-Tie

Angle Brackets

Slotted Truss / Joist Clips – STC / DTC

STC & DTC truss clips are used to provide alignment control between an LGS roof truss or joist and a non-bearing walls. The 38 mm slot permits vertical truss or joist chord movement when loads are applied.


Material: Galvanised Mild Steel: 275 g/m²


Installation:

- Use the specified number of fasteners (see performance table for fastener type)
- Use a maximum of one screw per slot

Key Features:

• Reinforcing ribs provide enhanced performance

To allow for vertical truss movement, screws into the truss or rafter should not be driven completely flush against the connector.

Product Dimensions

		Hongor Dime	ensions [mm]		Holes					
Model No.		naliyer Dille			Flange A	Flange B				
	А	В	C	t	Ø4.3x43 Slot	Ø4.3				
STC	70	48	32	1.3	1	2				
DTC	70	48	64	1.3	2	4				

Performance Values - STC / DTC to Stud

	Faste	Safe Working Loads [kN]							Characteristic Capacities [kN]						
	Flange A (X1214D325)	Flange B) (X1214D325)	Without Gap		6mm Maximum Gap		12mm Maximum		Without Gap		6mm Maximum		12mm Maximum		
Model No.			R _{1,SWL}	R _{4,SWL}	R _{1,SWL}	$R_{4,SWL}$	R _{1,SWL}	R _{4,SWL}	R _{1,K}	$R_{4,K}$	R _{1,K}	$R_{4,K}$	R _{1,K}	R _{4,K}	
STC	1	2	0.82	0.16	0.60	0.16	0.33	0.16	1.32	0.25	0.96	0.25	0.53	0.25	
DTC	2	4	0.89	0.71	0.89	0.71	0.64	0.71	1.42	1.14	1.42	1.14	1.03	1.14	

1) Truss or rafter must be bearing on top plate to achieve loads under "Without Gap"

2) Clips are required on both sides of the truss to achive R₄ loads (stagger parts to avoid screw interferences)

X1214D325

3) To allow for vertical truss movement, screws into the truss or rafter should not be driven completely flush against the connector

Over-Sail Movement Connectors

Contents

 \bigcirc

Movement Clip Connector – SCB
Bypass Framing Movement Clip Strut Connector – SSB 57
Head of Wall Movement Clip Connector – SCW58
Drift Clip Bypass Framing Connector – IDCB59
Silde Clip Connector – SCHA60
Light Gauge Steel Splicing Clip – LGSSC 61
Hybrid Strut – HYS 63

Clip Connectors

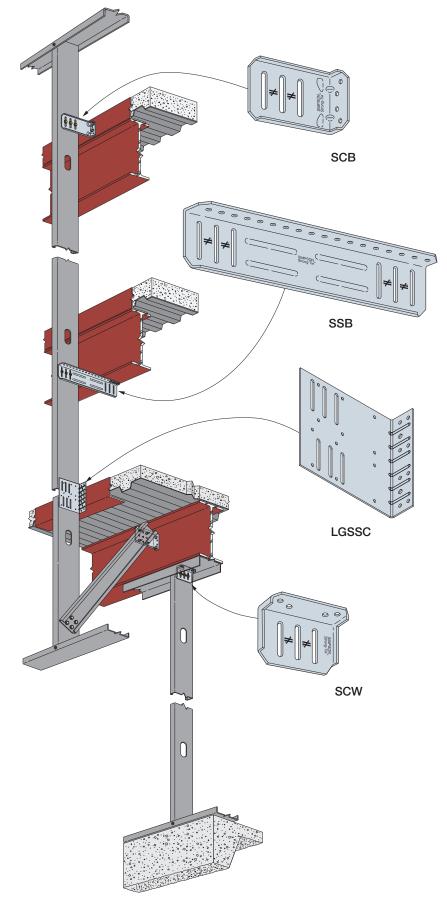
Movement Clip Connectors for Over-Sail Projects

As part of a commitment to expand our range of products for light gauge steel applications, we have developed a new line of connectors for use with buildings having "over-sail" structures.

Over-sail projects require a variety of connectors which provide a load path from the over-sail structure to the primary structure for:

- Wind loads
- · Seismic loads
- Dead loads

C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC


Movement clip connectors enable the structural building frame to deflect independently of the over-sail configuration.

Fixed clip connectors support the dead load of an over-sail structure from the structural frame. These have the added benefit of providing a connector solution for load bearing walls and roof systems.

Our connectors for over-sail construction methods accommodate many different framing applications in a variety of locations.

We also offer connectors for head-of-wall and strut applications.

The movement clip connectors are designed to be fixed to the building structure and the over-sail steel section. The slots in the connectors allow deflection of the over-sail to occur independently of the building structure, accommodating movement when encountered in the building design.

Movement Clip Connector – SCB

SIMPSON Strong-Tie

The SCB movement clip connector is a high performance connector for over-sail framing applications. Designed to reduce design time and overall installed cost. Various anchorage methods have been tested, and the resulting allowable anchorage loads eliminates the need to manually design connector anchorage. The SCB as a single connector can accommodate applications that would typically require two connectors, reducing material and labour costs. The SCB connectors are manufactured in a number of different sizes to accommodate a variety of stand off conditions and steel stud sizes.

Material: Galvanised Mild Steel: 275 g/m²

Installation: Use the specified number of fasteners (see performance table for fastener type).

Use the specified number of shouldered screws (XLSH34B1414 – provided). Install shouldered screws in the slots adjacent to the No-Equal stamp.

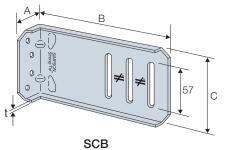
Use a maximum of one screw per slot

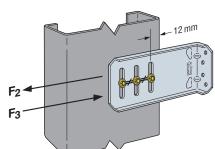
Key Features:

- Provides a full 25 mm of both upward and downward movement
- Supplied with Ø6 shouldered screws (XLSH34B1414-83)

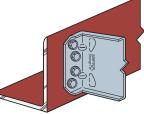
Product Dimensions

	U.	ongor Dim	ml	Holes				
Model No.		anger Dime	mj	Flange A	Flange B			
Model No.	А	В	C	t	Ø5.5	Ø6.4 x 57 Slot		
SCB43.5-KT	38	89	100	1.6	4	2		
SCB45.5-KT	38	140	100	1.6	4	3		
SCB47.5-KT	38	191	100	1.6	4	3		
SCB49.5-KT	38	241	100	1.6	4	3		
SCB411.5-KT	38	292	100	1.6	4	3		

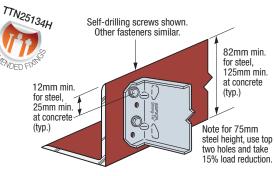

Performance Values - SCB to Stud

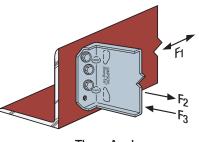

			000								
	Fasteners	Sa		king Loa N]	ds	Characteristic Capacities [kN]					
Model No.	rastellers	Mem	iber Thi	ckness	[mm]	Member Thickness [mm]					
Mouel No.	Flange B	1.	.2	1.	.6	1.	.2	1.	.6		
	Qty (XLSH34B1414)	R _{2,SWL}	R _{3,SWL}	R _{2,SWL}	R _{3,SWL}	R _{2,K}	R _{3,K}	R _{2,K}	R _{3,K}		
SCB43.5-KT	2	2.7	3.1	3.4	4.3	4.3	4.9	5.4	6.9		
SCB45.5-KT	2	2.7	3.1	3.4	4.3	4.3	4.9	5.4	6.9		
30D40.0-KT	3	4.0	4.4	4.4	5.6	6.4	7.1	7.0	9.0		
SCB47.5-KT	2	2.7	3.1	3.4	4.2	4.3	4.9	5.4	6.7		
30D47.3-KT	3	4.0	4.4	4.4	5.6	6.4	7.1	7.0	9.0		
SCB49.5-KT	2	3.1	3.1	3.4	4.2	4.9	4.9	5.4	6.7		
00D49.0-NT	3	4.0	4.4	4.4	5.6	6.4	7.1	7.0	9.0		
SCB411.5-KT	2	3.1	3.1	4.4	4.1	4.9	4.9	7.0	6.5		
300411.3-N1	3	3.8	4.4	4.4	5.6	6.1	7.1	7.0	9.0		

1. When the SCB connector is used with two shouldered screws,


the screws may be installed in any two slots.

 Stated loads are based on clips installed with screws in the anchor leg.
 For other anchorage installations, the capacity of the connection system will be the minimum of the tabulated value and the loads, from the SCB Anchorage Loads table





Four Anchors

Two Anchors

Three Anchors

Anchorage Values

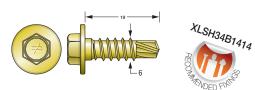
	Anchorage Type	Anchorage Fasteners	Safe Working Loads [kN]	Characteristic Loads [kN]		
	Flange A	Qty	R _{2,SWL}	R _{2,K}		
	Min 5.0mm thick	2	5.0	7.6		
	Steel Self Drilling Screw (XLQ114B1224)	3	7.3	11.4		
		4	9.9	15.2		
	C20 Concrete	2	1.7	2.7		
	Titen Screws	3	2.3	3.2		
	(TTN25134H)	4	3.0	3.6		

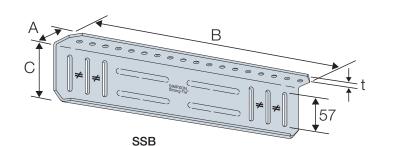
Over-Sail Movement Connectors

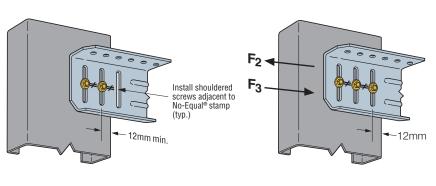
Bypass Framing Movement Clip Strut Connector - SSB

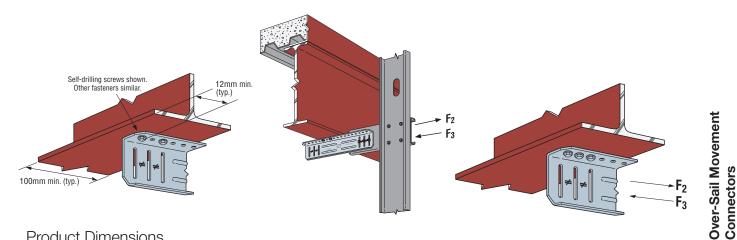
The SSB framing movement clip is a versatile strut connector commonly used at the bottom of a steel beam to accommodate large over-sail structures.

Material: Galvanised Mild Steel: 275 g/m²


Installation: Use the specified number of fasteners (see performance table for fastener type).


Use the specified number of shoulder screws (XLSH34B1414 - provided). Install shouldered screws in the slots adjacent to the No-Equal stamp.


If the SSB intrudes on interior space, it can be trimmed. The trimmed part shall allow an edge distance from the centre of the nearest anchor to the end of the trimmed part of a minimum of 14mm.


Key Features:

- Provides a full 25mm of both upward and downward movement
- Supplied with Ø6 shouldered screws (XLSH34B1414-83)

Product Dimensions

		Hongor Dime	ensions [mm]		Holes			
Model No.		nanger Dime			Flange A	Flange B		
Model No.	A	В	C	t	Ø5.5	Ø6.4x57 Slot		
SSB3.518-KT	41	89	457	1.6	18	6		

Performance Values - SSB to Stud

			Si	afe Work [kl	Characteristic Capacities [kN]							
	Model No.	Number of LGS Fasteners in Flange B	Men	Member Thickness [mm]				Member Thickness [mm]				
			1.2		1.6		1.2		1.6			
		Qty (XLSH34B1414-83)	R _{2,SWL}	R _{3,SWL}	R _{2,SWL}	R _{3,SWL}	R _{2,K}	R _{3,K}	R _{2,K}	R _{3,K}		
	SSB3.518-KT	2	3.1	3.1	4.8	4.4	4.9	4.9	7.7	7.0		
	3303.318-N1	3	4.6	4.8	5.9	5.4	7.3	7.7	9.5	8.7		

|--|

Anchorage	Anchorage Fasteners (XLQ114B1224)	Safe Working Loads [kN]	Characteristic Loads [kN]		
Type Flange A	Qty	$\mathbf{R}_2 = \mathbf{R}_{3,SWL}$	$\mathbf{R}_2 = \mathbf{R}_{3,k}$		
Min 5.0mm	2	5.6	8.9		
thick Steel	3	8.3	9.5		

1. When the SSB connector is used with two shouldered screws, the screws may be installed in any two slots.

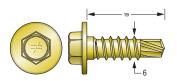
2. The capacity of the connection will be the minimum of the performnace values for SSB to stud or SSB to steel

3. The maximum standoff for SSB with (2) screws and (3) screws is 310mm and 280mm respectively.

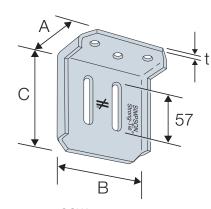
Head of Wall Movement Clip Connector - SCW

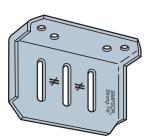
SCW movement clip connectors are primarily used in deflection head applications that require vertical movement relative to the structure. The connector can also be used to strengthen window and door jambs for projects that utilise slip-track.

Material: Galvanised Mild Steel: 275 g/m²

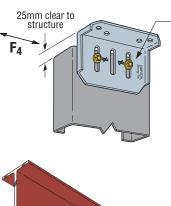

Installation: Use the specified number of fasteners (see performance table for fastener type).

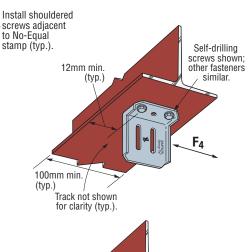
Use the specified number of shoulder screws (XLSH34B1414 – provided). Install shouldered screws in the slots adjacent to the No-Equal stamp.


Use a maximum of one screw per slot.


Key Features:

- Provides a full 25mm of both upward and downward movement
- Supplied with Ø6mm shouldered screws (XLSH34B1414-83)




XLSH34B1414-83 Ø6 mm Shouldered Screw

SCW

Anchorage Loads

Characteristic

Loads [kN]

R_{4, k}

5.1

7.7

5.5

11.0

Safe Working

Loads [kN]

R_{4, SWL}

3.2 4.8

3.4

6.9

Performance Values - SCW to Steel Section

Product Dimensions

			Hongor Dime	noiono [mm]		Holes			
	Model No.		nanger Dime	ensions [mm]		Flange A	Flange B		
	model ne.	A	В	C	t	Ø5.5	Ø5 x 57 Slot		
ĺ	SCW3.25-KT	38	83	100	1.6	3	2		
	SCW5.5-KT	38	140	100	1.6	4	3		

Performance Values - SCW to Stud

		[kN]		Characteristic Capacities [kN]				Anchorage		
Model No.	Number of LGS Fasteners in Flange B			Member Thickness [mm]			Model No.	Fasteners	Minimum Base Material	
model No.		1.2	1.6	1.2	1.6			Qty		
	Qty (XLSH34B1414-83)	R _{4, SWL}	R _{4, SWL}	R _{4, k}	R _{4.k}	R _{4, k}		(XLQ114B1224)		
		.,	.,				SCW3.25-KT	2		
SCW3.25-KT	2	2.8	3.4	4.5	5.4		30W3.20-N1	3	Minimum 5.0mm thick Steel	
SCW5.5-KT	2	2.8	4.4	4.5	7.0		SCW5.5-KT	2		
50W0.0-KT	3	2.8	5.4	4.5	8.7		36W0.0-KT	4		

1. When the SCW5.5 connector is used with two shouldered screws, install screws in the outermost slots.

2. The capacity of the system will be the minimum of the tabulated value for the SCW to Stud or the SCW to Steel Section.

C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC

Over-Sail Movement

Connectors

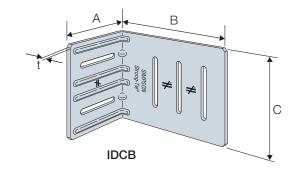
Drift Clip Bypass Framing Connector – IDCB

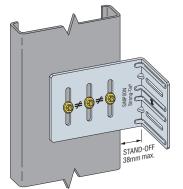
SIMPSON Strong-Tie

The IDCB drift clip connector is used to secure bypass stud framing to the edge of a slab. The connector will accommodate 25mm of lateral drift in each direction and 25mm of upward or downward vertical deflection. Tested load values are provided for anchorage to a steel-edge angle using Strong-Drive XL Screws (XLQ114B1224) – sold separately.

Material: Galvanised Mild Steel: 275 g/m²

Installation: Use the specified number of fasteners and anchors (see performance table for fastener type).


In the vertical slots, use the specified number of shouldered screws (XLSH78B1414 included) for attachment to the stud. Install screws to align with the No-Equal stamp.


For attachment to a steel edge angle (Min. 4.5 mm – Max. 12.75mm) use Strong-Drive XL Large Head Metal screws (XLQ114B1224 – sold separately). Use one screw centred in each horizontal slot. Install screws to align with the No-Equal stamp on the connector, and un-screw half a turn.

For fastener installation into steel backed by concrete, pre-drilling into both the steel and the concrete will be required. For pre-drilling use a 4.75mm dia. bit.

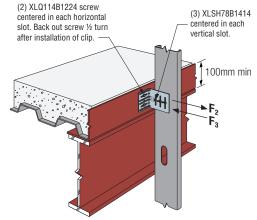
Key Features:

- Horizontal embossments and corner gussets optimise performance in the F₂ load direction
- Precision Manufactured shouldered screws (XLSH78B1414) provided with the ICDB connector, prevent over-driving and ensure that the clip functions properly
- Simpson Strong Tie[®] No-Equal stamps mark the centre of the slots to help ensure accurate shoulder screw and anchor placement

Over-Sail Movement Connectors

Product Dimensions

		Hongor Dime	ensions [mm]		Но	les
Model No.		nanger Dime			Flange A	Flange B
Model No.	А	В	C	t	Ø6.4 x 57 Slot	Ø6.4 x 57 Slot
IDCB45.5-KT25	89	140	101	2.7	2	3


Performance Values

	Fast	eners	Safe Work [k		Characteristic Capacities [kN]		
Madal Na	Flange A	Flange B	Member Thio	ckness [mm]	Member Thickness [mm]		
Model No.			1.2	1.6	1.2	1.6	
	Qty (XLQ114B1124)	Qty (XLSH78B1414)	$R_{2,SWL} = R_{3,SWL}$	$\mathbf{R}_{2,SWL} = \mathbf{R}_{3,SWL}$	$\mathbf{R}_{2,\mathrm{K}} = \mathbf{R}_{3,\mathrm{K}}$	$\mathbf{R}_{2,\mathrm{K}}=\mathbf{R}_{3,\mathrm{K}}$	
IDCB45.5-KT25	2	3	3.0	3.4	4.7	5.4	

1. XLSH78B1414 supplied with the connector

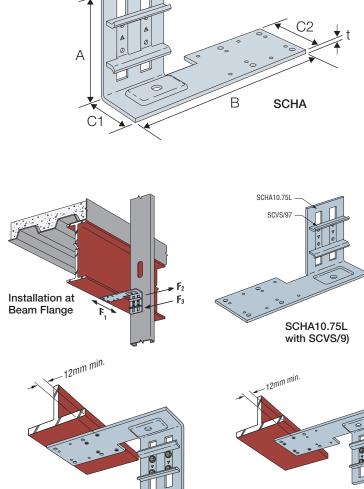
Serviceability Values

	Seviceability Loads [kN]						
Deflection Limits	Member Thickness [mm]						
[mm]	1.2	1.6					
	$F_2 = F_3$	$F_2 = F_3$					
3.2	2.0	2.2					
4.8	2.9	3.3					

Side Clip Connector – SCHA

SCHA connectors are an ideal solution for facade or load bearing construction, where the LGS requires framing anchors to be fixed to the top of a concrete floor slab, or the bottom of a steel beam. The connector features a wide support leg to decrease eccentricity on anchors and provide a variety of anchorage options. The SCVS vertical slider (included) provides superior rotational support to the vertical leg of the SCHA connector, helping improve the buckling performance of the anchored leg.

Material: Galvanised Mild Steel: 275 g/m²


Installation: Use all specified fasteners.

Ensure the SCVS vertical slider is centred in the SHCA vertical slots by aligning the 'tick' marks adjacent to the triangular holes in the slider with the No-Equal stamp on the SCHA clip. Shoulder screws (XLSH78B1414) inside brackets should be specified by designer.

Key Features:

- Provides a full 25mm of both upwards or downwards movement
- Tabulated design values for anchorage help mitigate risk and provide ease of specification
- Either face of the anchorage leg can be used against the support
- Accommodates stand-off distances up to 120mm
- Can be used with 89mm, 100mm, 150mm and 200mm studs
- Pre-punched anchor holes also eliminate the need for pre-drilling and help ensure accurate anchor placement

End Condition Installation

SIMPSON

Strong-Tie

Product Dimensions

		u.		Holes					
Model No.		n;	anger Dimensior	Flanç	je A	Flange B			
	А	В	C ₁	C ₂	t	Ø5.4	Triangle	Ø4.8	Ø8
SCHA10.75-KT15	125	273	70	93	3.5	4	2	6	4
SCHA10.75L-KT15	125	273	70	93	3.5	4	2	6	4

Front Condition

Installation

Performance Values

	Primary Structure Base Material	Fasteners			Mambar	Maximum	Cofo M	lorking Loo	do [kN]	Characteristic Londo [kN]			
Model No.		Flange A	Flange B		Thickness	Stand-Off Distance	Sale V	/orking Loa	us [kiv]	Characteristic Loads [kN]			
		Qty (X1B1214)	Condition	Qty (XLQ114B1224)	[mm]	[mm]	R _{1, SWL}	R _{2, SWL}	R _{3, SWL}	R _{1, k}	R _{2, k}	R _{3, k}	
			4	Front	4	1.2	50	0.9	3.9	2.7	1.4	6.3	4.3
		4	Front	4	1.6	50	1.0	4.4	3.9	1.7	7.0	6.3	
SCHA10.75-KT15		6	Front	4	1.6	50	1.6	5.8	4.6	2.5	9.3	7.4	
SCHA10.75L-KT15		4	End	4	1.2	120	0.5	3.7	2.5	0.8	5.9	4.1	
		4	End	4	1.6	120	0.7	3.7	3.2	1.2	5.9	5.1	
		6	End	4	1.6	120	1.6	4.7	3.4	2.5	7.5	5.5	

1. Flange A: Min (4 fixings) - Fill all round holes - Max (6 fixings) - Fill all round and triangular holes.

2. The stand-off is the diistance from the interior flange of the stud to the face of the supporting structure. Interior flange of the stud is assumed to align with the inside vertical edge of the connector see images.

3. Loads are based on 90mm studs. Web crippling checks for deeper members are the responsibility of the Designer/Engineer.

4. Loads are based on in plane loads applied to the fasteners nearest te support with complete rotational resistance at the studs.

Over-Sail Movement

Connectors

Light Gauge Steel Splicing Clip – LGSSC

The LGSSC is a universal splicing clip designed to connect the over – sail LGS studs to the primary structure in continuous walling installations.

The LGSSC provides a secure connection to the floor slab whilst allowing for up to 50mm of vertical movement between butt jointed light gauge steel studs. It is non-handed, enabling an easier ordering process for site.

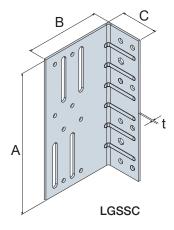
Material: Galvanised Mild Steel: 275 g/m²

Installation:

1) Connect to Primary Structure

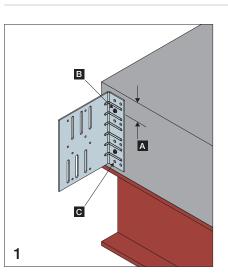
Secure connector to primary structure with specified fasteners (2 No. TTN25134H through hexagonal holes for concrete support [B] or 8 No XLQ114B1224 through round holes for steel support [C]). When connecting to a concrete support a minimum fastener edge distance of 50mm is required [A].

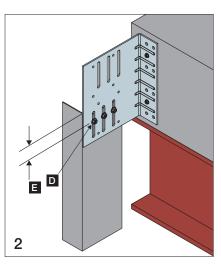
2) Install Lower Stud

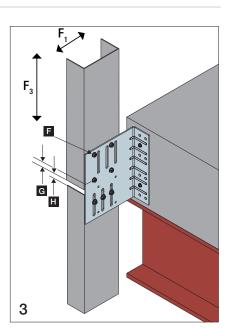

Secure lower stud with specified number of XLSH34B1414 screws into the movement slots [D]. Screws are to be fixed centrally within the movement slots, allowing vertical movement of the lower stud. A minimum end distance of 12.5mm is required [E].

3) Install Upper Stud

Secure upper stud with specified number of X1B1214R100 screws through the round holes [F], ensuring that the lower screws are a minimum of 12.5mm from the bottom end of steel stud [G]. Minimum gap between upper and lower studs is 12.5mm [H].


Key Features:


- Suitable for use on concrete or steel primary structures
- Accommodates up to 50mm of movement between butt jointed light gauge steel studs
- Suitable for light gauge steel stud thickness of 1.2mm to 1.6mm and widths of 100mm to 150mm
- Performance values for F₁ and F₃ load directions, when connected to concrete or hot rolled steel
- Maximum hot rolled steel material thickness
 12.5mm
- 50mm fastener edge distance required when fixed to a concrete substrate



XLSH34B1414

ТТ_{N25134Н}

VDED F

Light Gauge Steel Splicing Clip – LGSSC

Product Dimensions

		Hongor Dimo	ensions [mm]		Holes						
Model No.		nanger Dime			Flan	ge B	Flange C				
Wouch No.	А	В	C	t	Ø4.1	Ø6.5 x 50 Slot	Ø6	Hexagonal			
LGSSC90	175	90	43	2.5	8	4	8	2			
LGSSC140	175	140	43	2.5	8	6	8	2			
LGSSC190	175	190	43	2.5	12	6	8	2			
LGSSC240	175	240	43	2.5	12	6	8	2			
LGSSC290	175	290	43	2.5	12	6	8	2			

Performance Values

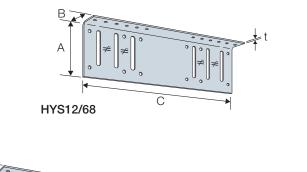
		Fasteners					Safe Working Loads				Characteristic Capacities			
Model No.	Flange B	Flange B	Flange C		Member Thickness	[kN]				[kN]				
	(Upper Stud)	(Lower Stud)	Steel Suppport	Concrete Support	[mm]	Steel Se	ection ⁽¹⁾	Conc	rete ⁽²⁾	Steel Se	ection ⁽¹⁾	Concr	rete ⁽²⁾	
	Qty (X1B1214)	Qty (XLSH34B1414)	Qty (XLQ114B1224)	Qty (TTN25134H)		R _{1,SWL}	R _{3,SWL}	R _{1,SWL}	R _{3,SWL}	R _{1,k}	R _{3,k}	R _{1,k}	R _{3,k}	
LGSSC90	4	2	8	2	1.2	19.0	14.8	6.0	10.9	30.4	23.6	9.6	17.4	
L033090	4	2	0	2	1.6	19.0	21.8	6.0	10.9	30.4	34.8	9.6	17.4	
LGSSC140	4	3	8	2	1.2	19.0	14.8	6.0	10.9	30.4	23.6	9.6	17.4	
L0330140	4	5	0	2	1.6	19.0	21.8	6.0	10.9	30.4	34.8	9.6	17.4	
LGSSC190	6	3	8	2	1.2	19.0	22.1	6.0	10.9	30.4	35.4	9.6	17.4	
L0330190	0	5	0	2	1.6	19.0	32.6	6.0	10.9	30.4	52.2	9.6	17.4	
LGSSC240	6	3	8	2	1.2	19.0	22.1	6.0	10.9	30.4	35.4	9.6	17.4	
Lu336240	0	3	0	2	1.6	19.0	32.6	6.0	10.9	30.4	52.2	9.6	17.4	
LGSSC290	6	3	8	2 -	1.2	19.0	22.1	6.0	10.9	30.4	35.4	9.6	17.4	
10000290	U	3	O		1.6	19.0	32.6	6.0	10.9	30.4	52.2	9.6	17.4	

1. Minimum thickness of steel support 5.0mm

2. C20 Concrete

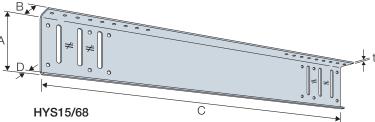
Hybrid Strut – **HYS**

The Hybrid Strut can be used as either a slide or rigid clip. Commonly used at the bottom of a hot rolled steel girder to accommodate excessive stand off conditions associated with some over-sail connection details.


Material: Galvanised Mild Steel: 275 g/m²

Installation: Fix the bracket to the hot rolled steel section using X1224D540 screws (number varies depending on hot rolled steel size).

Connect strut to LGS over–sail section with 3 number XLSH78B1414 shoulder screws. Simpson Strong-Tie No-Equal stamps mark the centre of the slots to help ensure the correct placement of the shoulder screws.


Key Features:

- Available in 305mm and 381mm lengths
- Ergonomically positioned slots minimizes eccentric loads and maximizes capacity
- Over-sail application allows 25mm of vertical movement in each direction when shoulder screws are used through the centre of the slot
- Simpson Strong-Tie No-Equal stamps mark the centre of the slots to help ensure the correct placement of the shoulder screws

SIMPSON

Strong-Tie

XLSH78B1414

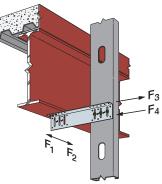
Product Dimensions

Model No.		Har	nger Dimensions (r		Ho Flan	Holes Flange B		
	А	В	С	D	t	Ø4.8	Ø6.35x57	Ø4.8
HYS12/68-KT25	89	38	305	-	2.0	12	6	12
HYS15/68-KT25	89	38	381	13	2.0	12	6	12

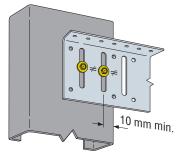
Maximum Standoff Distance

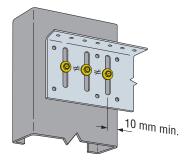
Model No.	Slip	Clip	Fixed-Clip			
	S2	S3	F4	F6		
HYS12/68-KT25	175	143	127	127		
HYS15/68-KT25	251	219	203	203		

¹⁾ Maximum standoff distance's are for two or three fasteners to primary structure



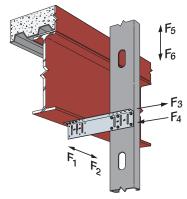
Hybrid Strut – HYS


Performance Values - Slide Clip - HYS to Stud


	Fasteners	Member Screw		Saf	e Working Loa [kN]	ıds	Characteristic Capacities [kN]			
Model No.	Stud Qty (XLSH78B1414)	Thickness [mm]	Installation Pattern ⁽²⁾	$\mathbf{R}_{1,\text{SWL}} = \mathbf{R}_{2,\text{SWL}}$	R _{3,SWL}	R _{4,SWL}	$R1_{,\kappa} = R_{2,\kappa}$	R _{3,K}	R _{4,K}	
	2	1.2	S2	0.7	3.8	2.8	1.1	6.0	4.4	
HYS12/68-KT25	3	1.2	S3	0.7	5.7	5.6	1.1	9.1	9.0	
ITTS12/00-K125	2	1.6	S2	1.1	4.6	4.4	1.7	7.4	7.1	
	3	1.0	S3	1.1	7.1	6.9	1.7	11.3	11.0	
	2	1.2	S2	0.7	3.8	2.8	1.1	6.0	4.4	
HYS15/68-KT25	3	1.2	S3	0.7	5.7	5.6	1.1	9.1	9.0	
11313/08-6123	2	1.6	S2	1.1	4.6	4.4	1.7	7.4	7.1	
	3		S3	1.1	7.1	6.9	1.7	11.3	11.0	

2. See illustrations below for fastener placement to stud framing.

Slide Clip Installation

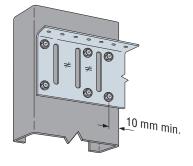

Slide Clip Screw Pattern S2 HYS fixed to Stud with 2 No Shouldered Screws

Slide Clip Screw Pattern S3 HYS fixed to Stud with 3 No Shouldered Screws

(No screws required in small round holes in slide application)

Performance Values - Fixed Clip - HYS to Stud											
	Fasteners	Mambar	Corour		Safe Worl	king Loads		Characteristic Capacities			
Model No.	Stud	Member Thickness	Screw Installation	[kN]				[kN]			
	Qty (X1214D325)	[mm]	Pattern ⁽²⁾	$R_{1,SWL} = R_{2,SWL}$	R _{3,SWL}	$R_{_{4,SWL}}$	$R_{5,SWL} = R_{6,SWL}$	$\mathbf{R}_{1,K} = \mathbf{R}_{2,K}$	R _{3,K}	R _{4,K}	$\mathbf{R}_{5,\mathrm{K}} = \mathbf{R}_{6,\mathrm{K}}$
	4	1.2	F4	0.6	4.6	4.7	2.3	0.9	7.4	7.5	3.7
HYS12/68-KT25	6		F6	0.7	6.8	7.0	2.3	1.1	10.8	11.2	3.7
HT312/00-K125	4	1.6	F4	0.6	9.4	8.0	2.5	1.0	15.0	12.8	4.0
	6	1.0	F6	1.3	13.7	8.0	3.2	2.0	22.0	12.8	5.1
	4	1.2	F4	0.6	4.6	4.7	2.0	0.9	7.4	7.5	3.2
HYS15/68-KT25 -	6	1.2	F6	0.7	6.8	7.0	2.0	1.1	10.8	11.2	3.2
	4	1.6	F4	0.6	9.4	10.3	2.5	1.0	15.0	16.5	4.0
	6	1.6	F6	1.3	13.7	11.7	2.5	2.0	22.0	18.7	4.0

2. See illustrations below for fastener placement to stud framing.


Fixed Clip Installation

Fixed Clip Screw Pattern F4 HYS fixed to Stud with 4 No Screws

Ø

10 mm min.

0

Fixed Clip Screw Pattern F6 HYS fixed to Stud with 4 No Screws

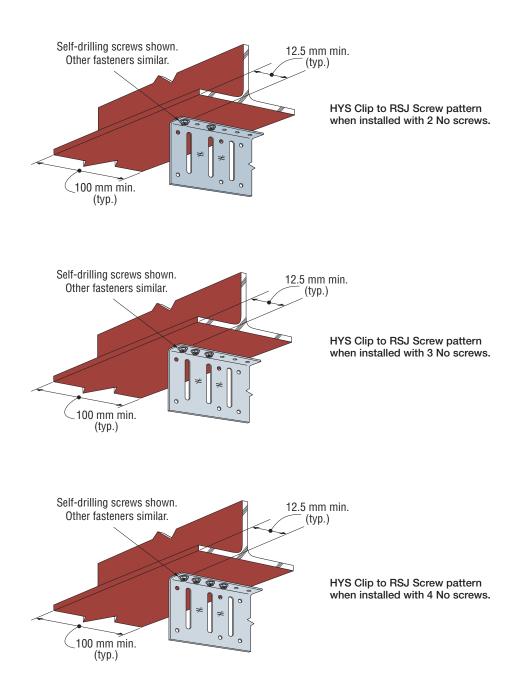
Over-Sail Movement Connectors

Hybrid Strut – **HYS**

Performance Values - HYS to Steel Sections

Fasteners	Safe Worki [kN		Characteristic Capacities [kN]			
Qty (X1224D540)	$R_{3,SWL} = R_{4,SWL}$	$\mathbf{R}_{5,SWL} = \mathbf{R}_{5,SWL}$	$\mathbf{R}_{3,\mathrm{K}} = \mathbf{R}_{4,\mathrm{K}}$	$\mathbf{R}_{5,\mathrm{K}} = \mathbf{R}_{6,\mathrm{K}}$		
2	7.1	2.5	11.4	4.0		
3	10.7	3.8	17.0	6.0		
4	14.2	5.0	22.7	8.0		

1. HYS Connector Loads are also limited by the RSJ Connection Loads. Use the minimum tabulated values from the connector and RSJ tables as applicable.


2. See illustrations below for fastener placement to stud framing.

C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

3. Tabulated R1 and R2 loads are based on assembly tests with the load through the centerline of the stud.

4. Minimum stud width for fixed application is 150mm.

5. XLSH78B1414 shouldered screw is supplied with the connectors.

Over-Sail Movement Connectors

65

Find more information on our website

www.strongtie.co.uk

S f 🛛 in 🕨 @strongtieUK

Product: SCHA Slide Clip Connector

Our Complete Range of Performance Tested Connectors & Fasteners

Introducing the latest range of connectors and fastenings for light gauge steel construction from Simpson Strong-Tie®. The UK's first complete range of structural solutions designed and tested specifically for steel frame construction. Every structural connector needed for the assembly of steel framing and fixing to concrete, as well as screws for fastening drywall and other sub structures to the steel framework, are right here.

Steel Joist Connectors

 \bigcirc

Steel Joist Connector - SJC

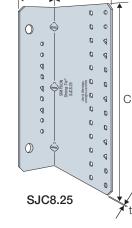
Steel Joist Connector - SJC

Steel Joist Connectors have been specifically designed for various LGS joist rafter applications. The unique clip dimensions enable easy installation on the open side of the joists and rafters with flanges and return lips.

Material: Galvanised Mild Steel: 275 g/m²

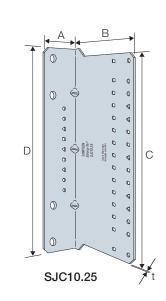
Key Features:

- Pre-punched holes reduce installation cost by eliminating the need for pre-drilling
- Fastener hole positions ensure accurate connector installation to accommodate a wide range of design and application requirements, as well as providing installation flexibility
- Angle lengths accommodate attachments for joists with return lips of up to 20mm
- Leg length enables connections with joists with flanges up to 89mm


Installation: Use the specified number and type of fasteners (see performance table for fastener type, quantities and installation pattern).

Minimum & Maximum Fastener Patterns

- 1. For minimum fastener installation: Fill all round holes in outer row only
- 2. For maximum fastener installation: Fill all round and triangular holes in outer row only


Inner Fastener Pattern

1. Fill holes in the positions indicated in the illustrations below

В

A

SIMPSON

Strong-Tie

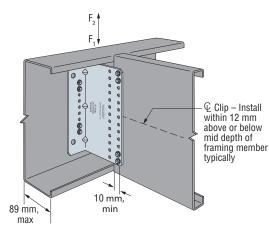
Product Dimensions

		Hongo	r Dimonsion	- [mm]		Holes						
Model No.	Hanger Dimensions [mm]					Flange A				Flange B		
	A	В	С	D	t	Ø4.8	Ø11.1	4.3 Tri	4.3 SQ	Ø4.8	4.3 Tri	4.3 SQ
SJC8.25	56	114	210	-	2.0	4	2	3	2	4	5	17
SJC10.25	56	114	260	283	2.0	4	4	3	2	6	5	19

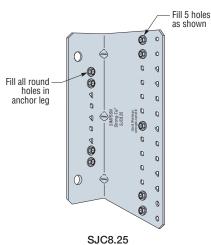
Performance Values

		Faste	ners			king Loads :N]	Characteristic Capacities [kN]		
		Flange A		Flange B	Member Thickness [mm]		Member Thickness [mm]		
Model No.	Pattern	LGS Stud or Joist	Min 5.0mm Steel Section	Stud	1.6	2.0	1.6	2.0	
		Qty (X1214D325)	Qty (X1224D540)	Qty (X1214D325)	$\mathbf{R}_{\mathrm{1,SWL}} = \mathbf{R}_{\mathrm{2,SWL}}$		$R_1 = R_{2,k}$		
	Min	4	4	4	4.4	4.4	7.0	7.0	
SJC8.25	Max	7	7	9	4.5	6.6	7.2	10.6	
	Inner	4	4	5	6.0	8.9	9.6	14.3	
	Min	4	4	6	5.2	7.2	8.3	11.6	
SJC10.25	Max	7	7	11	5.6	9.1	9.0	14.6	
	Inner	5	5	7	7.7	11.7	12.3	18.8	

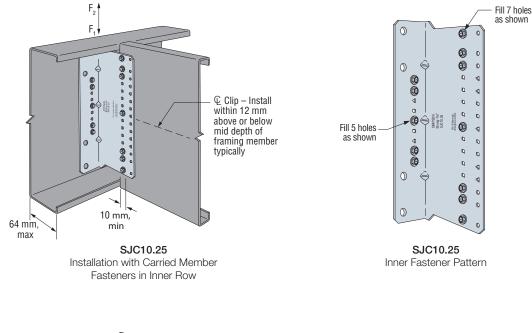
1. Performance values are based upon tests completed by Simpson Strong-Tie U.S. in accordance to ICC-ES AC261 - Acceptance criteria for connectors used with Cold-Formed Steel Structural Members


2. Min. fastener quantity and load values - fill all round holes; Max. fastener quantity and load values - fill all round and triangular holes; Inner fastener quantity and load values - see illustrations for fastener placement.

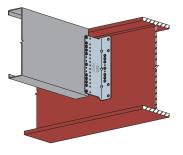
3. Loads are based on bracing of the members located within 12" of the connection.

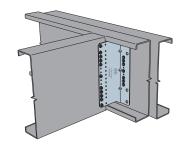

Simpson Strong-Tie® Connectors and Fasteners for Light Gauge Steel Structures

Steel Joist Connector – SJC



SJC8.25 Installation with Min. Screw Pattern (screw in round holes) For max. screw pattern, fill all round and triangle holes. Min./Max. patterns have screws only in outer row.


Inner Fastener Pattern



C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

SJC -Header to Jam Installation

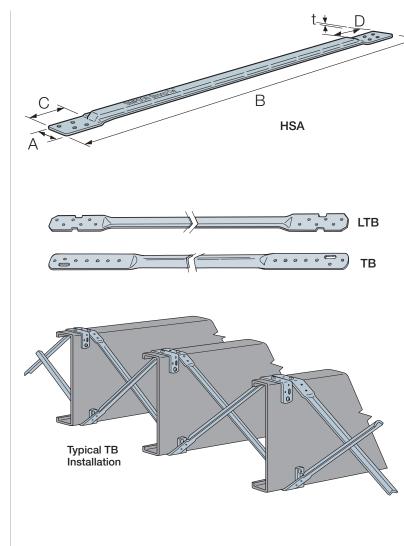
SJC -Joist to RSJ Installation

SJC -Joist to Girder Installation

Bridging Connectors and Ties

Bridging Connector - HSA / LTB / TB

The Bridging Connector provides bracing between floor joists, and offers a more cost effective method when compared to on site blocking and clip angles.


Material: Galvanised Mild Steel: 275 g/m²

Installation: Use the specified number of fasteners (see performance table for fastener type).

Secure to the floor joist with 2 no fasteners as each end of the connector.

Key Features:

• Quick on-site installation with lower requirement for fixings compared to clip angles

X1214D325

Product Dimensions

C-LGS-UK-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

		Connor	tor Dimonoiou			Holes						
Model No.		Connec	tor Dimensio	is [iiiiii]		End C			End D			
	Α	В	C	D	t	Ø3.6	Ø4.0	Ø4.1	Ø3.6	Ø4.0	Ø4.1	
LTB20	19	495	65	65	0.7	6	-	-	6	-	-	
TB20	25	508	137	137	0.9	-	7	-	-	7	-	
TB27	25	686	137	137	0.9	-	7	-	-	7	-	
TB27	25	686	137	137	0.9	-	7	-	-	7	-	
TB36	25	914	137	137	0.9	-	7	-	-	7	-	
HSA400	27	480	53	53	1.0	-	-	4	-	-	4	
HSA450	27	530	53	53	1.0	-	-	4	-	-	4	
HSA600	27	660	53	53	1.0	-	-	4	-	-	4	

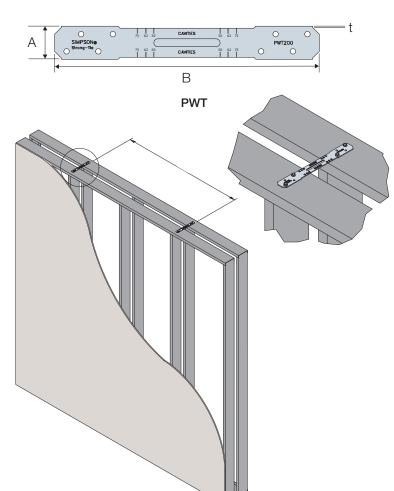
Selection Guide

		Model No.								
Joist Height [mm]		Joist Centres [mm]								
[]	300	400	450	600	(X1214D325)					
152 - 203	LTB20	-	-	-	4					
152 - 254	TB20	-	-	-	4					
152 - 304	TB27	TB27	-	-	4					
254 - 304	-	-	-	TB36	4					
175 - 225	-	HSA400	HSA450	HSA600	4					

SIMPSON

Strong-Tie

Party Wall Tie - PWT


The Party Wall Tie connects party walls whilst resisting the passage of sound to meet the requirements of Part E of the building regulations.

Material: Galvanised Mild Steel: 275 g/m²

Installation: Use the specified number of fasteners (see performance table for fastener type, 25 mm tek screws).

Key Features:

- Meets the requirements of Part E of the Building Regulations (Resistance to the Passage of Sound)
- Suits frames with cavity from 50mm to 75mm
- Can be used on closed panel construction where 50mm stiffening rib helps to check the minimum 50mm cavity width has been achieved
- Minimum material cross-section for optimum sound performance

SIMPSON

Strong-Tie

Installation Centres to be specified by structural engineer.

Product Dimensions

Model No.		Holes		
	A	В	t	Ø4.1
PWT200	25	200	1.5	8

Performance Values

Model No.	Fasteners	Safe Working Loads [kN]		Characteristic Capacities [kN]	
		Member Thickness [mm]		Member Thickness [mm]	
		1.6	2.0	1.6	2.0
	Qty (X1214D325)	$\mathbf{R}_{1,SWL} = \mathbf{R}_{2,SWL}$		$\mathbf{R}_{1,K} = \mathbf{R}_{2,K}$	
PWT200	2 + 2	1.1	1.1	1.8	1.8

1. An even number of fasteners are to be installed into either end of the PWT.

Parapet Wall Brackets

0

Parapet Wall Bracket - RCKW.

Parapet Wall Bracket - RCKW

The RCKW is a 1 or 2 part connector designed to resist an over-turning moment at the base of exterior knee-walls and parapets as well as interior partial height walls. These connectors offer a unique large and small anchorage hole pattern that permits anchorage into both hot rolled steel and concrete.

If more rigidity is required, a stiffener (the RCKWS) can be added to nest into the RCKW clip; the screw and anchor holes line up making installation simple, with no need for pre drilling. The RCKW and the RCKWS are sold separately.

Material: Galvanised Mild Steel: 275 g/m²

Installation: Use the specified number of fasteners (see performance table for fastener type).

When using the RCKWS, secure the stiffener to the clip with the specified screw fasteners.

Use all specified anchors to achieve tabulated performance values, the installation torque must be as published in the performance table, or the torque requirements of the anchor, whichever is greater.

When using the larger diameter anchor holes, the bottom track must be pre drilled or punched with an M20 hole.

Key Features:

- Anchorage legs incorporate stiffened flanges, improving over-turning moment resistance
- Large diameter anchor holes accommodate 12 mm diameter fixings e.g (LMAS stud with ATHP resin)
- The 3 additional large holes (RCKW5.5 and RCKW7.5 only) are for added versatility. The central hole is for a one-anchor solution. The 2 outer holes are for a two anchor solution that requires a higher capacity at the centre of the slab.
- Additional smaller diameter anchor holes allow for the attachment to hot rolled steel with X1224D540 self-drilling screws.

Product Dimensions

Hanger Dimensions [mm]										Hole	es								
Model No.			nunger						Flange A		Flange B								
	А	A,	В	C	D	D ₁	t	Ø4.8	Ø5.5	Ø6.7	Ø7.5	Ø14.3	Ø15.9						
RCKW3	90	-	66	75	22	-	4.7	9	-	2	-	1	-						
RCKW5.5	90	-	66	140	22	-	4.7	15	-	4	-	3	-						
RCKW7.5	90	-	66	190	22	-	4.7	21	-	6	-	3	-						
RCKW3S	-	38	56	75	-	19	4.7	-	3	-	2	-	1						
RCKW5.5S	-	38	56	140	-	19	4.7	-	5	-	4	-	3						

А

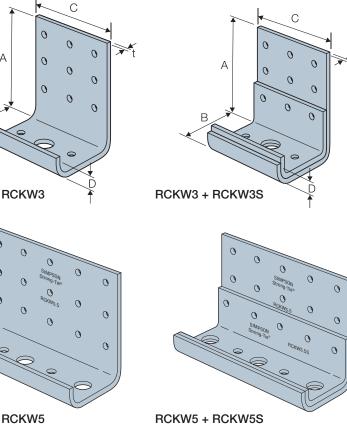
0

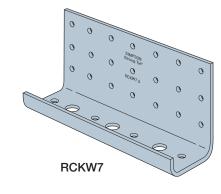
0

0

0

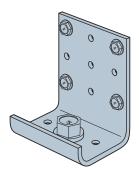
 $\langle \mathcal{Q} \rangle$


0

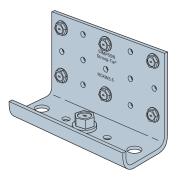

C

В

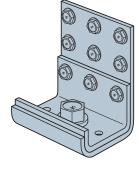
SIMPSON

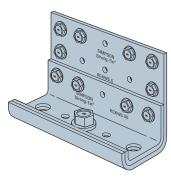


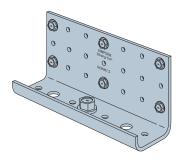
Parapet Wall Brackets

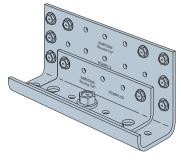

Simpson Strong-Tie® Connectors and Fasteners for Light Gauge Steel Structures

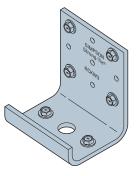
Parapet Wall Bracket - RCKW

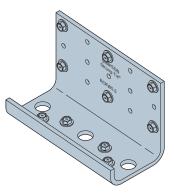


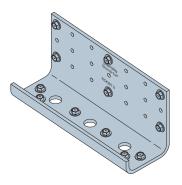

RCKW3 Fastener Pattern 1 - Concrete Application


RCKW5.5 Fastener Pattern 3 - Concrete Application


RCKW3 with RCKW Fastener Pattern 2 - Concrete Application


RCKW5.5 with RCKW5.5S Fastener Pattern 4 - Concrete Application


RCKW7.5 Fastener Pattern 5 - Concrete Application


RCKW7.5 with RCKW5.5S Fastener Pattern 6 - Concrete Application

RCKW3 Fastener Pattern 7 - Structural Steel Application

RCKWS Fastener Pattern 8 - Structural Steel Application

RCKW7 Fastener Pattern 9 - Structural Steel Application

Parapet Wall Bracket - RCKW

Performance Values

		Fasteners			Minimum		Assemby	Connector			
Model No.	Flange A Stud	Flange B Concrete	Structural		Framing Member Depth	Screw Installation Pattern	Rotational Stiffness ß	Rotational Stiffness B _c			
	Qty (X1214D325)	Qty (M12 LMAS)	Qty (X1224D540)		[mm]		[Nm/Rad]	[Nm/Rad]			
Performance Values: Concrete Applications											
RCKW3	- 4	1		1.2	90	1	12767	12993			
RCKW3	- 4	I	-	1.6	90	1	14462	15479			
RCKW3+RCKW3S	- 9	-		1.2	90	2	18530	19772			
RCKW3+RCKW3S	9	1	-	1.6	30	2	18530	19772			
RCKW5.5	- 6	1		1.2	150	3	36155	38189			
RCKW5.5		I		1.6		3	36155	38189			
RCKW5.5+RCKW5.5S	- 10	1		1.2	150	4	50843	55363			
RCKW5.5+RCKW5.5S	10	I		1.6	150	-	52764	56718			
RCKW7.5	6	1		1.2	200	5	57622	60560			
RCKW7.5	0	I	-	1.6			62594	64514			
RCKW7.5+RCKW5.5S	- 10	1		1.2	200	6	66774	70390			
RCKW7.5+RCKW5.5S	10	I	-	1.6	200	0	77847	81349			
	Pei	rformance Valu	es: Structural S	Steel Applic	ations						
RCKW3	- 4		2	1.2	90	7	8281	8666			
RCKW3	4	-	2	1.6	90	/	9859	10304			
RCKW5.5	6		4	1.2	150	8	30798	32436			
RCKW5.5	U	-	4	1.6	150	0	28911	30064			
RCKW7.5	- 6		6	1.2	200	9	64579	68194			
RCKW7.5	U	-	U	1.6	200	Э	78362	82656			

1. Tabulated values are based on framing members with track and stud of the same thickness and (1) Ø5.5mm Framing Screw into each stud flange unless otherwise noted.

2. Tabulated moment values correspond to connector strength without consideration of serviceability. designer must check

out-of-plane deflections using tabulated Rotational Stiffness.

3. Tabulated Assembly Rotational Stiffness is applicable for walls at 950mm tall with corresponding framing member depth and thickness.

4. Tabulated Connector Rotational Stiffness may be used for any wall heights; the designer must consider member deflection due to bending in the stud member.

5. Anchor tension, T, is the force in the anchor, at tabulated momement, M, or tension, F2, values.

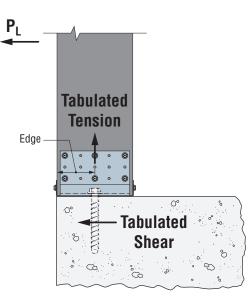
6. The designer is responsible for anchor design / specification

7. The designer is responsible for structural steel design.

8. Anchor tension values may be interpolated

9. See illustrations for fastener pattern placement

Assembly test with member failure

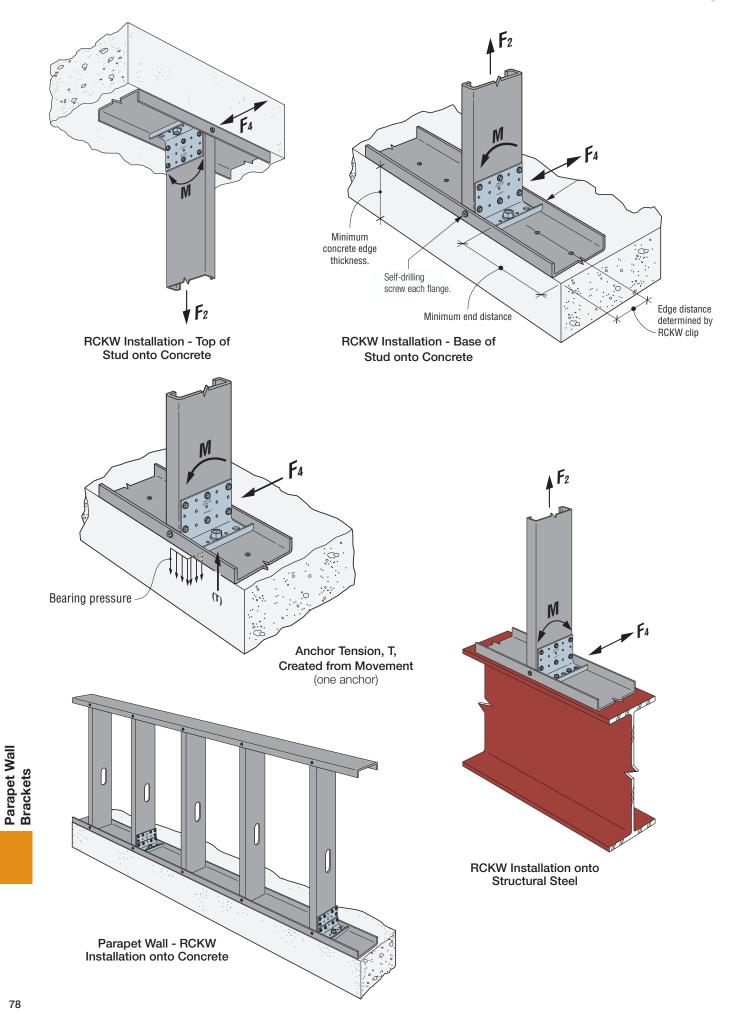


Typical RCKW Installation

Parapet Wall Bracket - RCKW

Performance Values

				afe Worki .oads [kN				Characteristic Capacities [kN]						
Model No.	Moment	t Anchor Tension at M _R Capacity		. .		Anchor Tension at R ₂ Capacity		Moment	Anchor Tension at M _R Capacity			Anchor Tension at R2 Capacity		
	M _{R,SWL} [Nm]	Concrete C20/25	Concrete C30/35	Tension R _{2,SWL}	Concrete C20/25	Concrete C30/35	Shear R _{4,SWL}	М _{я,к} [Nm]	Concrete C20/25	Concrete C30/35	Tension R _{2,К}	Concrete C20/25	Concrete C30/35	Shear R _{4,K}
Performance Values: Concrete Applications														
RCKW3	348	11.2	10.5	5.6	7.3	7.1	3.4	473	14.5	13.9	7.6	9.7	9.4	4.6
RCKW3	489	18.3	16.0	8.2	11.8	11.0	5.0	720	25.4	22.8	12.1	16.9	15.9	7.3
RCKW3+RCKW3S	476	17.5	15.4	11.5	19.6	16.7	3.5	648	21.8	20.0	15.7	23.9	21.7	4.8
RCKW3+RCKW3S	583	29.8	20.4	15.3	27.3	25.9	5.0	908	39.6	31.2	22.5	40.2	35.5	7.3
RCKW5.5	706	11.2	10.9	4.7	5.8	5.7	4.6	960	15.0	14.6	6.5	7.8	7.7	6.3
RCKW5.5	929	15.4	14.8	10.9	14.5	13.9	6.2	1369	22.3	21.5	16.1	21.0	20.2	9.1
RCKW5.5+RCKW5.5S	954	15.9	15.2	11.4	15.3	14.6	4.6	1299	21.0	20.3	15.5	20.2	19.5	6.3
RCKW5.5+RCKW5.5S	1308	23.8	21.9	16.9	25.2	23.1	6.2	1917	33.7	31.5	24.9	35.8	33.4	9.1
RCKW7.5	926	10.4	10.2	5.7	6.9	6.8	5.3	1261	14.0	13.8	7.3	8.7	8.6	7.3
RCKW7.5	1288	15.0	14.6	9.6	12.1	11.8	7.5	1896	21.8	21.3	13.3	16.4	16.1	11.1
RCKW7.5+RCKW5.5S	1233	14.3	13.9	10.0	12.6	12.3	5.3	1678	19.1	18.7	14.8	18.5	18.1	7.3
RCKW7.5+RCKW5.5S	1587	19.0	18.3	11.7	14.9	14.5	7.5	2336	27.6	26.7	25.3	33.8	32.4	11.1
			F	Performar	nce Values	: Structura	l Steel Ap	plications						
RCKW3	290	-	-	5.4	-	-	3.3	395	-	-	7.4	-	-	4.5
RCKW3	304	-	-	6.2	-	-	5.0	447	-	-	9.1	-	-	7.3
RCKW5.5	720	-	-	8.5	-	-	4.7	979	-	-	11.5	-	-	6.4
RCKW5.5	726	-	-	8.9	-	-	5.8	1070	-	-	13.1	-	-	8.5
RCKW7.5	1084	-	-	8.7	-	-	5.0	1476	-	-	11.8	-	-	6.9
RCKW7.5	1279	-	-	9.7	-	-	7.6	1883	-	-	14.3	-	-	11.2


Single Anchor - Shear and Tension (Tension from moment created from P₁)

Simpson Strong-Tie[®] Connectors and Fasteners for Light Gauge Steel Structures

Parapet Wall Bracket - RCKW

High Wind Ties

1

T

Π

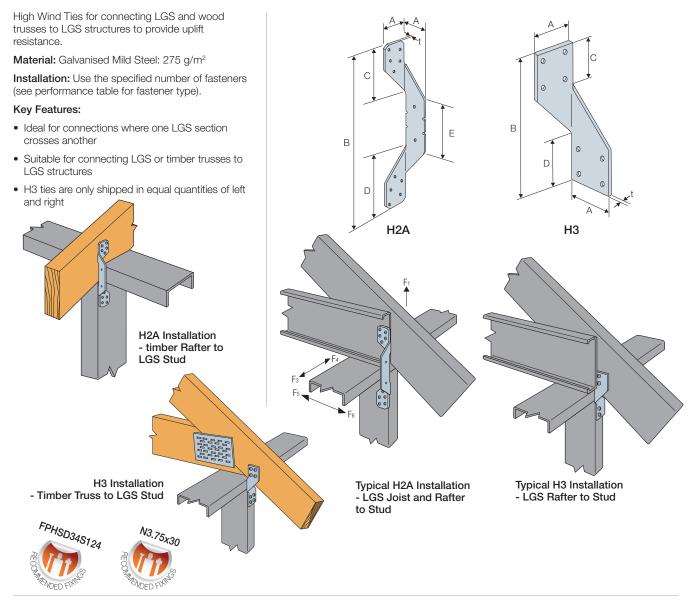
Π

Ī

Π

T

Contents


High Wind Tie - H2A/H3..

1

.....80

High Wind Tie - H2A/H3

SIMPSON Strong-Tie

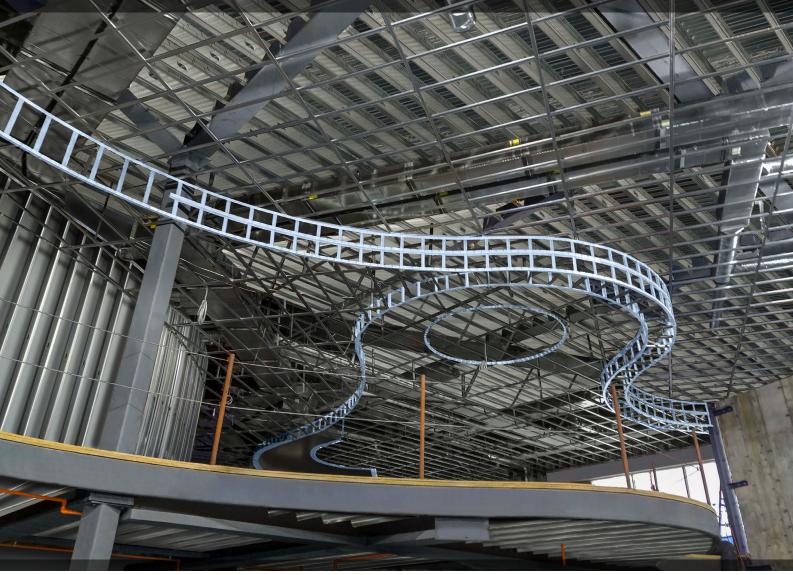
Product Dimensions

			Connector Din	annoiona Imm	1		Holes						
Model No.			Connector Din		l		Flan	ge C	Flange D		Flange E		
	А	В	C	D	E	t	Ø3.9	Ø4.3	Ø3.9	Ø4.3	Ø3.9		
H2A	38	265	89	89	87	1.1	5	-	5	-	2		
H3	40	117	38	38	-	1.1	-	4	-	4	-		

Performance Values

		Fast	teners		Safe V	/orking Loads	[kN] Characteristic Capacities [kN						
Model No.	Steel Rafter	Timber Rafter	To Top Track	To stud									
	Qty (FPHSD34S1214)	Qty (N3.75x30)	Qty (FPHSD34S1214)	Qty (FPHSD34S1214)	$\mathbf{R}_3 = \mathbf{R}_{4,SWL,LT}$	$R_5 = R_{6,SWL,LT}$	R _{2,SWL,ST}	$R_3 = R_{4,k}$	$\mathbf{R}_5 = \mathbf{R}_{6,k}$	R _{2,k}			
	LGS Rafter/Joist to LGS Connection												
H2A	5 - 1		5	0.4	0.4	2.00	0.64	0.71	3.20				
H3	2	-	2	-	0.4	0.6	1.67	0.64	0.89	2.67			
	Timber Rafter/Joist to LGS Connection												
H2A	H2A - 5 1				-	-	2.45	-	-	3.91			
H3	-	4	4	-	-	-	1.62	-	-	2.60			

1. Performance values based upon attachment of Light Gauge Steel members having a minimum thickness 1.0 mm


2. Performance values are based upon tests completed by Simpson Strong-Tie U.S. in accordance to ICC-ES AC261 - Acceptance criteria for connectors used with Cold-Formed Steel Structural Members

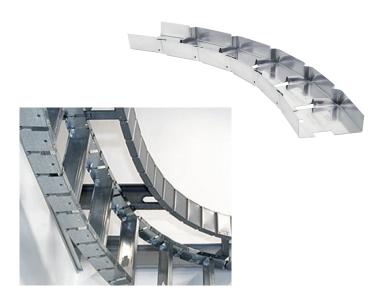
High Wind Ties

Ready Products Hand-Bendable Framing

Ready Products hand-bendable framing members, along with the Ready Bender[™] portable bending tools, enable an installer to create curved light-gauge steel wall and ceiling framing right on the jobsite. Easy to work with and endlessly versatile, the Ready-Hat[®], Ready-Track[®], Ready-Arch[®] and Ready-Angle[®] flexible framing sections create a LGS framing system that can help you realize even the most challenging curved drywall designs. Ready Products provide superior results in less time than traditional methods.

- Complete any curved framing job quickly and efficiently the first time.
- Easy for all skill levels to hand-form into uniform, smooth curves.
- One-piece steel construction, designed to hold shape with fewer fasteners.

Ready Track Bender[™] Custom Framing Tool


Creating arched openings and designs is simpler than ever with Ready-Arch framing members. Round, elliptical or s-shapes are all easy to form on the jobsite without any cutting or additional reinforcement. Ready-Arch members are also ideal for more challenging applications where material needs to curve along the web.

- Ideal for soffits, arches, light coves and elliptical or eyebrow curves for windows and doorways
- 0.8mm steel holds its shape without any fasteners
- · Installs to cold-formed steel or wood framing

Ready-Arch® Framing

Creating arched openings and designs is simpler than ever with Ready- Arch framing members. Round, elliptical or s-shapes are all easy to form on the jobsite without any cutting or additional reinforcement. Ready-Arch members are also ideal for more challenging applications where material needs to curve along the web.

- Ideal for soffits, arches, light coves and elliptical or eyebrow curves for windows and doorways
- 0.8mm steel holds its shape without any fasteners
- · Installs to cold-formed steel or wood framing

Ready-Hat® Framing

Whether the plans call for framing over a CMU wall or concrete column or just a curved transition from wall to ceiling, the Ready-Hat furring and framing channel is right for the job. This versatile product is easy to form by hand into the exact shape needed and is secured to concrete or CMU walls with power-driven fasteners or concrete screws.

- Ideal for furring on curved walls or to create coves, barrel vaults, groin vaults, soffits and serpentine ceilings
- Great for wrapping columns or as crossframing to eliminate drywall butt joints
- 0.9mm steel holds its shape once formed and positioned for easy fastening

COMING SOON

Ready Bender[™] Tools for Jobsite Framing

Ready Track Bender[™] Custom Framing Tool

The Ready Track Bender is a portable, on-the-jobsite tool that curves studs and track easily, accurately and conveniently by creating compound indentations at consistent intervals along the length of the material.

- Spaces indentations as close as 50mm apart for a tight radius, and up to 305mm or more apart for a larger radius
- Forms all standard stud and track profiles up to 0.9mm thick and 152mm wide
- No flange or web cutting to form radius and no plywood or strap repair needed for strength
- Reliable and precise turn the dial to the desired radius and create uniform bends in piece after piece, all day long
- Tough heavy-gauge steel construction throughout for smooth, trouble-free operation job after job
- Rugged plastic case for easy transportation

Ready Trim Bender[™] Custom Framing Tool

The Ready Trim Bender allows the user to curve angles quickly, accurately and conveniently right on the jobsite by creating compound indentations at consistent intervals along the length of the angle. It eliminates the need for old-fashioned tin snips and the trial-and-error method of approximating the right radius.

- Consistently forms the exact radius you need
- Tough heavy-gauge steel construction assures a smooth, trouble-free operation job after job
- Great for 0.5mm 0.9mm angles with 38mm x 38mm, 50mm x 50mm or 76mm x 76mm legs
- Minimum radius is 762mm 1117mm

Ready-Angle® Framing

Ready-Angle framing angle adapts to almost any shape, and curves in multiple directions, so it's easy to form challenging compound curves and s-bends. Use two pieces to replicate curved track for steel and wood studs, to form arches of any depth quickly, or to produce finished corners that are ready for drywall.

- Ideal for s-shapes, spirals, sweeps or virtually any free-form shape
- 0.8mm steel holds its shape without any fasteners
- A versatile product for problem-solving on the jobsite

COMING SOON

Engineered Versatility

UNITED KINGDOM SIMPSON STRONG-TIE®

Cardinal Point, Winchester Road, Tamworth, Staffordshire, B78 3HG Tel: +44 (0) 1827 255 600 Fax: +44 (0) 1827 255 616 info@strongtie.co.uk www.strongtie.co.uk

DENMARK

SIMPSON STRONG-TIE® A/S Hedegardesvej 11, Boulstrup DK - 8300 Odder Tel : (+45) 87 81 74 00

DK - 8300 Odder Tel : (+45) 87 81 74 00 info@strongtie.dk www.strongtie.dk

REPUBLIC OF IRELAND SIMPSON STRONG-TIE®

Kore Development Park, John F Kennedy Drive, Naas Rd, Dublin 12 Tel: +44 (0) 1827 255 600 Fax: +44 (0) 1827 255 616 www.strongtie.ie

SWEDEN

SIMPSON STRONG-TIE® CO/ Gbo Fastening Systems AB Bruksvägen 2, 593 75 Gunnebo Tel : (+46) 490 300 00 www.strongtie.se

GERMANY SIMPSON STRONG-TIE[®] GmbH Hubert-Vergölst-Str. 6-14 D- 61231 Bad Nauheim Tel : +49 (0)6032 8680-0 info@simpsonstrongtie.de www.strongtie.de

POLAND

SIMPSON STRONG-TIE® Sp. Z o. o. ul. Działkowa 115A, 02-234 Warszawa Tel : +48 22 865 22 00 Fax : +48 22 865 22 10 poland@strongtie.com www.strongtie.pl

NORWAY SIMPSON STRONG-TIE®

CO/ Christiania Spigerverk Smalvollveien 58, 0667 Oslo Tel : (+47) 2202 1300 www.strongtie.no

FRANCE SIMPSON STRONG-TIE® ZAC des 4 Chemins, 8540 Sainte Gemme La Plaine

ZAC des 4 Chemins, 85400, Sainte Gemme La Plaine Tel : (+33) 2 51 28 44 00 www.simpson.fr