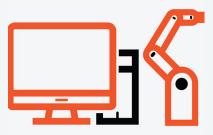


Strength Beyond Steel

CE & Guarantees

Our products are engineered to stand the test of time. So are our relationships. For over 60 years, Simpson Strong-Tie[®] has focused on creating connectors that perform under the toughest of conditions, helping you build safer, stronger homes and structures. With more than 1,000 product solutions, we're proud to offer the widest connector range in Europe.


All of our products meet the Construction Products Regulations and those that are required to achieve CE Marking are tested to guarantee that they comply.

Technical Support

Our Technical Support team is on hand to answer your questions and provide some sound installation advice, from making sure you have the most suitable product, to the best ways to go about installing them.

Design & Manufacture

We regularly work with house builders and designers to develop our range of structural connector solutions, considering every aspect of their use to meet your ever-changing needs.

Ease of installation, performance characteristics and life-span are the fundamental principles that make up our design DNA.

Stock & Delivery

We maintain 200 different product families spanning over 5,000 product lines. We will continue supporting them for as long as you need them.

From our distribution centres in Tamworth and Dublin, we do everything we can to make sure you get your delivery in full, and on time - to your premises or direct to site.

Research & Development

We continuously invest in research and product development to ensure that our product solutions are efficient, easy to use and meet the needs of construction professionals.

> Our Technical team design, develop and test new product solutions.

Plans & Drawings

We know that architects, designers, and contractors need very detailed technical information about our products, so we provide drawings and technical information free on our website.

These include CAD and BIM drawings, as well as DWG 2D and 3D, SAT files and performance data sheets.

Software

We offer free software solutions to help you choose the right connector or fastener.

Connector Selector enables you to quickly and easily identify the connectors or fastenings you will need, based on your dimensions, purpose and performance requirements.

Anchor Designer offers a quick calculation for anchor fixings into cracked and non cracked concrete.

Marketing Support

Our in-house marketing team is on hand to provide a wide range of product images and resources for you to use in-store or online, including catalogues, posters, displays and promotions, product data and product installation and feature videos.

Custom Manufacturing

Every construction project comes with its own set of challenges, sometimes unexpected and quite often unique.

Our engineering and production teams provide a design and manufacture service for 'one off' connectors, based on plans provided by you.

Your unique connector is produced using state-of-the-art equipment and is ready to send - often within one working day.

We build quality and innovation into everything we make and everything we do.

Made using the best quality steels, all of our "No Equal" products and connectors undergo rigorous quality testing, to ensure that they meet safety regulations, and exceed our customers' needs and expectations. No Equal

This is our 'No Equal' commitment. The difference between us and everybody else.

www.strongtie.co.uk

Alphabetical index

<u>A</u>
AB255HD Angle bracket for angled screw installation 50
AB255SSH Angle bracket for angled screw installation51
AB90/AB105 Structural angle brackets
ABAI Acoustic angle bracket
ABR100 Reinforced structural angle bracket
ABR255 Reinforced angle bracket
ABR255SO Reinforced angle bracket
ABR9020 Reinforced structural angle bracket
AE116 Reinforced wide angle bracket
AG922 Reinforced wide angle bracket
AKR Reinforced angle bracket for timber frames43
AT-HP High-performance multi-material resin

В

BAN Fixing band
BTALU Concealed beam hanger, aluminium68
BTC Concealed beam hanger for concrete

С

CNA Connector nail	
CSA Connector screw	

Ε

E20/3 Reinforced angle bracket
ESCR Washer head structural timber screw
ESCRC Countersunk head structural timber screw80
ESCRFTC Fully threaded structural timber screw81
ESCRFT-FTZ Fully threaded structural timber screw82
ESCRT2R Twin thread structural timber screw

н

HTT Hold down for timber frame studs42

SIMPSON

Strong-Tie

Μ

MAH Multi-purpose hold down for studs	
---------------------------------------	--

Ν

NP Nail plate
NPB Nail plate for CLT62
NP-X Custom-designed nail plate

Q

QD76KE Multi-purpose system107
QDBPC50E Quik Drive connector screw system 106
QDPRO64E Flooring and decking system

S

SIT Acoustic isolating strip
SITW Acoustic isolating washer
SSH Steel-to-timber connector screw
SWD Structural double threaded screw
т
TTUFS Countersunk head timber screw
w
WA-RL Throughbolt with wide washer
WSNTL Collated timber panel screws

z

In addition to the products listed in this catalogue, we have additional products on our website, strongtie.co.uk

Subject Index

General Information

Different CLT Configurations

Configuration summary 24-25
Wall-to-wall connection
T-connection between two walls
CLT wall on a concrete floor
CLT wall on a CLT floor
CLT floor on a CLT wall
CLT floor on a concrete wall
CLT floor on timber joists
CLT floor on a CLT floor
Wooden tongues or plates
Halved joint
Skewed screws
Force transfer between two walls
Fixing a CLT floor to a wall plate
Connector brackets
CLT building envelope

Hold Downs

HTT Hold down for timber frame studs
AKR Reinforced angle bracket for timber frames
MAH Multi-purpose hold down for studs

Structural Angle Brackets

ABR255 Reinforced angle bracket
ABR255SO Reinforced angle bracket
AB255HD Angle bracket for angled screw installation 50
AB255SSH Angle bracket for angled screw installation51
AE116 Reinforced wide angle bracket
AG922 Reinforced wide angle bracket
E20/3 Reinforced angle bracket
ABR100 Reinforced structural angle bracket
ABR9020 Reinforced structural angle bracket
AB90/AB105 Structural angle brackets
ABAI Acoustic angle bracket
SIT Acoustic isolating strip
SITW Acoustic isolating washer

SIMPSON

Nail Plates and Fixing Bands

NPB Nail plate for CLT
NP Nail plate
NP-X Custom-designed nail plate
BAN Fixing band

Concealed Connectors

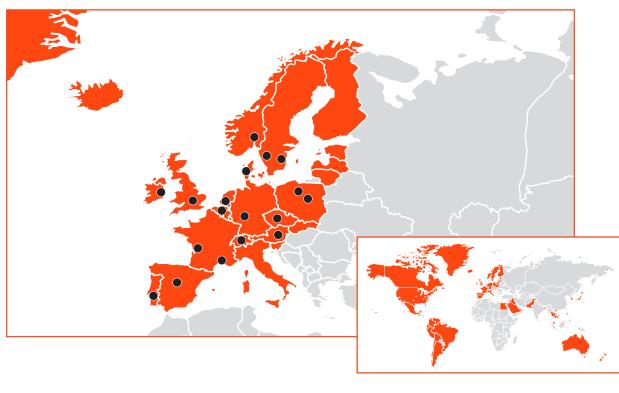
BTALU Concealed beam hanger, aluminium68	3
BTC Concealed beam hanger for concrete)

Screws and Nails for CLT

Understanding screw resistance
Structural timber screws for CLT:
ESCR Washer head structural timber screw
ESCRC Countersunk head structural timber screw80
ESCRFTC Fully threaded structural timber screw
ESCRFT/ESCRFTZ Fully threaded structural timber screw82
TTUFS Countersunk head timber screw
ESCRT2R Twin thread structural timber screw
SWD Structural double threaded screw
WSNTL Collated timber panel screws90
Connector screws and nails for CLT:
SSH Steel-to-timber connector screw
ZYKLOP [™] Angled washer and screw94
CSA Connector screw
CNA Connector nail

Mechanical and Chemical Anchor Systems

WA-RL Throughbolt with wide washer	100
AT-HP High-performance multi-material resin	102


Related Products

QD76KE Multi-purpose system107
QDBPC50E Quik Drive connector screw system 106
QDPRO64E Flooring and decking system107
Bespoke designs107

Company information

For more than 60 years, Simpson Strong-Tie[®] has focused on creating structural products that help people build safer and stronger homes and buildings. A leader in structural systems research and technology, Simpson Strong-Tie[®] is one of the largest suppliers of structural building products in the world. Our commitment to product development, engineering, testing and training is evident in the consistent quality and delivery of our products and services.

For more information, visit the company's website at **strongtie.co.uk**

Factories, offices, or warehouses in Australia, Austria, Belgium Canada, Chile, China, Czech Republic, Denmark, France, Germany, Ireland, Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden, Switzerland, Taiwan, UK and USA Distribution in Australia, Canada, Chile, Western Europe, part of Eastern Europe, Middle East, Egypt, Japan, Korea and other Asian countries, Mexico, New Zealand, UK, part of South America and USA

European Manufacturing

Beyond precision engineering and rigorous testing, our European based manufacturing facilities are what enable us to deliver products to the highest industry standard. We invest in - and invent - fabrication technology that can bring our designs to life, and ultimately provide your projects strength, speed and success.

All rights reserved. This catalogue may not be reproduced in whole or in part without the prior written approval of Simpson Strong-Tie Company Inc.

Contents

The Simpson Strong-Tie Company Inc. "No Equal" Pledge Includes:

- Quality products value-engineered for the lowest installed cost at the highest-rated performance levels
- Most thoroughly tested and evaluated products in the industry
- Strategically located manufacturing and warehouse facilities
- National code agency listings
- Largest number of patented connectors in the industry
- European locations with an international sales team
- In-house R&D and tool and die professionals
- In-house product testing and quality control engineers

Quality Policy

We help people build safer structures economically. We do this by designing, engineering and manufacturing "No Equal" structural connectors and other related products that meet or exceed our customers' needs and expectations.

Everyone is responsible for product quality and is committed to ensuring the effectiveness of the Quality Management System. Simpson Strong-Tie[®] is an ISO 9001 registered company. ISO 9001 is an internationally recognised quality management system standard, which lets our customers know that they can count on the consistent quality of Simpson Strong-Tie[®]'s products and services.

Karen Colonias President, Chief Executive Officer

Testing Laboratory Accreditation

The Andris Peterson European Test Laboratory, located in the UK in Tamworth, Staffordshire, is the first manufacturer's facility to achieve third party accreditation to the international standard BS EN ISO/IEC 17025.

The world-class facility now conducts around 10,000 product tests annually and has recently benefited from a significant investment, which will enable double productivity. The fact that we extensively test our products give you the reassurance that they will perform in the toughest conditions. We strive to ensure that our products are compliant with the latest European requirements for construction products.

We Are ISO 9001-2008 Registered

Simpson Strong-Tie is an ISO 9001-2015 registered company. ISO 9001-2015 is an internationally-recognized quality assurance system which lets our domestic and international customers know that they can count on the consistent quality of Simpson Strong-Tie® products and services.

ISO 14001

Our Swedish, French (St. Gemme la Pleine) and UK facilities are ISO 14001 certified. This standard states the requirements for an environmental management system, and applies to the environmental aspects over which our company has control and can be expected to have an influence.

OHSAS 18001

Our Tamworth, UK facility is OHSAS 18001 certified. This certification reflects an internationally applied British Standard for occupational health and safety management systems.

To learn more about these certifications and organizations, please visit www.ISO.org, www.ICCSafe.org and www.bsigroup.com

General Information	▶ 8 - 21
Different CLT Configurations	▶ 22 - 39
Hold Downs	▶ 40 - 45
Structural Angle Brackets	▶ 46 - 59
Nail Plates and Fixing Bands	▶ 60 - 65
Concealed Connectors	▶ 66 - 71
Screws and Nails for CLT	▶ 72 - 97
Mechanical and Chemical Anchors	▶ 98 - 103
Related Products	▶ 104 - 109

SIMPSON Strong-Tie

General Information

About Simpson Strong-Tie [®]	10-11
What is CLT?	12
Calculation of capacities	13
Corrosion information	14-15
Acoustic performance	16-17
Seismic activity and timber constructions	18-21

@strongtieUK ♀ f in ►

www.strongtie.co.uk

About Simpson Strong-Tie®

Guaranteed Performance

The fact that we extensively test our connectors gives you the reassurance that they will perform in the toughest conditions. We strive to ensure that our products are compliant with the latest European requirements for construction products.

The quality and variety of our product lines gives engineers and builders more freedom to design flexibly, while offering reliable and proven performance. In addition, customers can count on our specialized local technical support centers with experienced field representatives and tailored training programmes.

The characteristic values published within this document have been determined from test values in accordance with EN14358 for use with Limit State Design methods. Corresponding deflection limits are published, where appropriate, which indicates the amount of slip in the connection when the stated characteristic load is applied.

What are our connectors made from?

Unless otherwise stated the connectors listed in this document are manufactured from S250GD Carbon Steel with a pre-galvanised coating of 275 g/m², in accordance with EN 10346.

SSH Screw

SIMPSON STRONG-TIE® WORKS ALONGSIDE:

About Simpson Strong-Tie®

General Information

Quality testing

Our ultra modern laboratories constantly test new and existing products as part of our determination to provide the best connectors and anchoring solutions. We subject our products to the most rigorous strength, pull-out and fire-resistance tests. It gives you the reassurance that they will perform reliably in the toughest conditions, as well as providing key information for installing our solutions to ensure the best performance.

Accreditations and warranties

When it comes to quality and safety, we are determined to lead by example. We select the best steel and ensure that our products comply with the latest European requirements for construction products. Check out our product pages for the corresponding technical approval numbers. They can be viewed and downloaded from www.strongtie.co.uk.

Research and development

We continue to invest heavily in research and development to produce new high-performance solutions that are easier to use and geared towards the needs of professional users.

Technical support

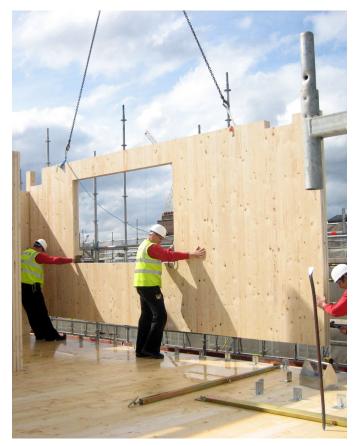
The quality and variety of our product lines give engineers and builders more freedom to design. You can count on our dedicated team of engineering consultants for support and guidance with your projects and construction issues. We have technical hotlines in all our offices and can be contacted every working day during working hours.

Technical information and drawings

Designers, engineers, project managers and architects need access to highly detailed technical information and 3D drawings of our products. CAD drawings and documentation can be downloaded for free in several formats (DWG 2D and 3D, SAT, etc.).

For more information: www.strongtie.co.uk

What is CLT?

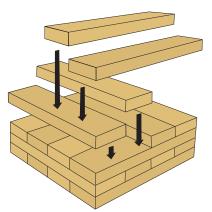

Wood is clearly a material for the future, as evidenced by its growing popularity in the construction industry. During the 1990s, wood engineers in Austria and Germany achieved a breakthrough with a new construction system known as CLT (cross-laminated timber). Nowadays, CLT is widely used across Europe and is beginning to gain traction in the United States.

CLT panels are favoured for residential and public-access buildings, but they can also be used in all types of construction projects, ranging from individual houses to high-rise buildings.

Stadthaus, an eight-storey residential building in London, is one of the most iconic constructions made from CLT. Cross-laminated timber is also used in engineered structures, such as Canada's 160-metre Mistissini Bridge, and all types of small residential buildings.

Manufacturing secrets

CLT is made from gluing perpendicular layers of solid timber boards together. Each layer is rotated by 90° in relation to the previous layer to improve the panel's performance. The number of layers varies and depends on the application (generally between three and eight layers). Panels can be made in sizes up to 20 metres in length and 4 metres in height. Their thickness tends to vary between 60 mm and 320 mm.



Stadthaus, Murray Grove. Image provided by KLH UK.

Creating panels with perpendicular layers not only ensures excellent mechanical strength, but also guarantees high dimensional stability. These two qualities give architects and building planners considerable freedom with their designs.

CLT can easily be incorporated into hybrid construction projects, such as timber-concrete and timber-metal, and is also suited to projects combining different construction systems, whether posts, beams, or timber frames.

Advantages of using CLT

- Environmentally-friendly construction material
- Healthy and comfortable indoor climate
- Maximum architectural freedom
- Easy planning of individual homes and residential buildings
- Effective use of the available land area through
- slim-line modules
- Superior mechanical performance
- Short building times, dry construction and quick occupation
- High precision with numerically controlled cutting
- Prefabricated elements delivered straight to the construction site
- Lightweight panels compared to masonry and concrete elements
- Technically endorsed construction product featuring the CE marking

Calculation of capacities

Strong-Tie

Characteristic values

$$R_d = \frac{R_k \times k_{mod}}{\gamma_M}$$

When selecting a product, it is very often necessary to check that its resistance is higher than the loads that will be applied.

The design strength (R_{a}) of a product is obtained from the characteristic value R_{i} (published in the tables in this catalogue
and on our website) by multiplying it with the factors K_{mod} of γ_M .

Service

The characteristic values are expressed in kilo Newtons (kN) and dimensions in millimetres (mm) unless otherwise specified.

The k_{med} factor given in the table above (extract from Eurocode 5 § 3.1.4) depends on the load duration class, the service class and the type of material used.

Partial factor for the connection in question (γ_{M}):

- In UK, 1,30 for connections
- In Denmark, 1,35 for connections
- In Germany, 1,30 for connections
- In Norway, 1,30 for connections
- In Sweden, 1,30 for connections

- In France, 1,3 for connections

- In Portugal, 1,3 for connections
- For further information, please refer to your Eurocode National Annexes.

The characteristic values given in the product pages are the resistances corresponding to a specific application. Other applications (other fasteners, other fixing quantities, force direction, etc.) are very often available and covered by the ETAs, in which case we would advise you to refer to the corresponding ETA.

Change of density

The resistance R, given in the tables corresponds to the use of CLT comprising C24 graded timber as required for structural applications.

For higher grade timbers, the tabulated values remain unchanged. For lower grade timbers, the tabulated values must be multiplied by the k_{dens} factor calculated according to the formula below:

$$k_{dens} = (\varrho k / 350)$$

Where:

350 kg/m³: characteristic density of the C24 graded timber according to EN 338 ek: characteristic density of the timber used according to EN 338

Load combination

In case of load combination, the formulas given for each product family must be verified.

Stiffness

In this document, the assembly stiffness is given for certain products. This value can be used to check the displacement induced in the SLS and confirm that the chosen connector is compatible with the intended application.

The stiffness data given in the product pages are the stiffness values corresponding to a specific application.

Fixing to a rigid substrate

The values given for a rigid substrate (steel or concrete) apply as long as the anchor systems are capable of withstanding the forces. Plugs must often be checked separately, since a number of factors can influence their strength (distance from the edge, centre spacings, quality of the concrete, etc.). In addition, the forces that must be taken into account for the plug on some products are greater than the forces that must be taken into account for the connector due to the lever arm. To determine which forces should be prioritised, refer to our ETAs. When it comes to the actual verification, the Anchor Designer[®] software is available for free from www.strongtie.co.uk.

Material Medium Short Long class Permanent Instantaneous term term term 0.8 0.9 1 0.6 0.7 1.1 Solid 2 0.6 0.7 0.8 0.9 1.1 wood 3 0.5 0.55 0.65 0.7 0.9

kmod values according to EN 1995-1-1

Actions

- In Spain, 1,35 for connections
 - In Belgium, 1,3 for connections

 $\left(\frac{F_1}{R_1}\right)^2 + \left(\frac{F_3}{R_3}\right)^2 + \left(\frac{F_4}{R_4}\right)^2 \le 1$

Downward + lateral + tensile:

$$\left(\frac{F_2}{R_2}\right)^2 + \left(\frac{F_3}{R_3}\right)^2 + \left(\frac{F_4}{R_4}\right)^2 \le 1$$

13

Understanding the corrosion issue

Many environments and materials can cause corrosion, including ocean salt air, fire retardants, fumes, fertilizers, preservative-treated wood, de-icing salts, dissimilar metals and more. Metal connectors, fasteners and anchors could corrode and lose load-carrying capacity when installed in corrosive environments or when installed in contact with corrosive materials.

When corrosion is caused by airborne solutions (ocean air, swimming halls, spray from a salt-treated street in winter, etc.) the metal parts can be in environments that are directly exposed to rain. They can be covered by a roof or inside the ventilated area of a facade.

The many variables present in a building environment make it impossible to accurately predict if, or when, corrosion will begin or reach a critical level. This relative uncertainty makes

Galvanic corrosion

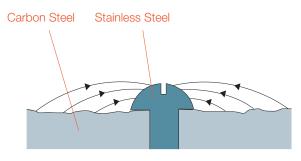
Galvanic corrosion (also known as bimetallic corrosion, dissimilar metal corrosion or contact corrosion) may occur when dissimilar metals (e.g. galvanised mild steel and stainless steel) are in contact in a corrosive electrolyte (e.g. water containing salt, acid, etc.). When a galvanic couple forms, one of the metals in the couple becomes the anode and corrodes faster than it would all by itself, while the other becomes the cathode and corrodes slower than it would alone. For galvanic corrosion to occur, three conditions must be present:

- 1. Electrochemically dissimilar metals must be present,
- 2. These metals must be in electrical contact,
- 3. The metals must be exposed to an electrolyte.

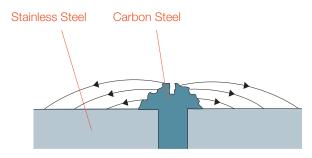
The relative nobility of a material can be predicted by measuring its corrosion potential. The well-known galvanic series, (see below) lists the relative nobility of certain materials in seawater. A small anode/cathode area ratio is highly undesirable. In this case, the galvanic current is concentrated onto a small anodic area. Rapid thickness loss of the dissolving anode tends to occur under these conditions. Adverse area ratios are likely to occur with fasteners at joints.

Galvanic Series of Metals

Corroded end (Anode)
Magnesium, Magnesium alloys and Zinc
Aluminium, Cadium, Iron and Steel
Lead, Tin, Nickel and Ni-Cr alloy
Brasses, Copper and Cu-Ni alloys
Nickel
Stainless Steels
Protected end (Cathode)


Carbon steel fasteners used with stainless steel connectors should be avoided because the ratio of the area between the stainless steel to carbon steel is small and the fasteners it crucial that specifiers and users are knowledgeable of the potential risks and select a product suitable for the intended use. It is also prudent that regular maintenance and periodic inspections are performed, especially for outdoor applications.

SIMPSC


Strong-Tie

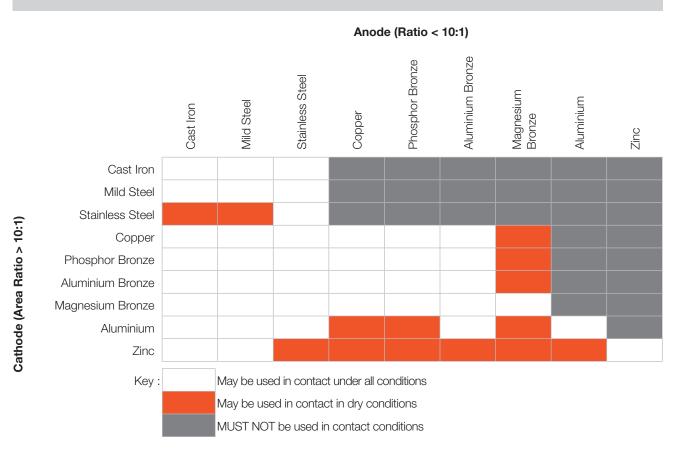
It is common to see some corrosion in outdoor applications. Even stainless steel can corrode. The presence of some kinds of corrosion, e.g. white rust on zinc, does not mean that load capacity has been affected or that failure is imminent. If significant corrosion, e.g. red rust, is apparent or suspected, then a qualified engineer or inspector should inspect the framing members, fasteners and connectors. Replacement or cleansing of affected components may be appropriate. Red rust corrosion of steels will mostly carry on increasing and will cause major damage at an advanced stage.

will be subject to aggressive attack, thus greater corrosion. Conversely, the rate of attack of a carbon steel connector secured by a stainless steel fastener is much slower. Prevention of bimetallic corrosion is possible by excluding an electrolyte from the connection by painting or taping over the joint. Alternatively, the two metals should be isolated from each other by painting each contact surface or using a non-metallic isolation material, typically nylon, neoprene or Teflon washers, pads, gaskets or bushes depending upon the particular application.

Large ANODE (Carbon Steel) area, small CATHODE (stainless steel fastener) area showing no attack on the fasteners and relatively insignificant attack of carbon steel.

Large Cathode (Stainless Steel) area, small ANODE (carbon steel fastener) area showing no attack on the stainless steel and relatively increased attack of the fastener.

General


Corrosion information

The table below provides details of general materials that may be used together in certain instances, also depending on area ratio as previously discussed.

It is sometimes hard to give general statements on certain materials (e.g. Aluminium) as the appearance of certain

ingredients in the certain alloy (e.g. Copper) has a major impact on the corrosion resistance in presence of certain electrolytes (e.g. de-icing salt). In addition, the post treatment (e.g. Eloxation) makes a big difference on the corrosion resistance.

Good to know: When low-alloy steels in high moisture atmospheres are in contact even with small carbon steel particles, bimetallic corrosion can cause a nucleus for a stainless steel corrosion. This might happen e.g. when stainless fasteners are processed with non-stainless tools.

Service classes according to Eurocode 5: Definition of the service classes environment are given within the EN1995-1-1

Service Class	Description	Examples
1	Moisture content in the materials corresponding to a temperature of 20°C and the relative humidity of the surrounding air only exceeding 65% for a few weeks per year.	Warm roof, intermediate floors, timber frame walls - internal and party walls.
2	Moisture content in the materials corresponding to a temperature of 20°C and the relative humidity of the surrounding air only exceeding 85% for a few weeks per year.	Cold roof, ground floors, timber frame walls - external walls where member is protected from direct wetting.
3	Climatic conditions leading to higher moisture contents than in service class 2.	External uses - fully exposed.

SIMPSON Strong Tie Strong Tie

Acoustic performance

Nowadays, acoustic comfort is an important criterion

sounds can penetrate the building and are transmitted

acoustic solutions is key to avoiding this phenomenon.

Although wood boasts a wealth of qualities (the ultimate environmentally-friendly material, insulating properties

and an effective mechanical strength-to-weight ratio),

its relatively low mass reduces the structure's acoustic

Improving the acoustic performance of certain structures

represents a major challenge for designers and engineers. This issue is especially apparent with CLT structures, since

some designs may call for certain timber elements to be

left exposed for aesthetic reasons, meaning that there is

performance. For example, all rigid contacts help to

transmit sound throughout the building.

during the construction design process. All sorts of

through the walls and structure. Choosing the right

no system to "absorb" the sound. Similarly, since timber is not a hollow material, any vibrations at the end of a CLT panel will spread across the rest of the panel and also into any adjacent panels that have not been insulated against

That is why Simpson Strong-Tie[®] has developed the ABAI angle bracket for connecting CLT walls and floors without transferring any sound and vibrations through the fasteners. This product is generally used in combination with an acoustic isolating strip between the wall and floor elements.

In Europe, the Building Acoustic Performance Regulation of 30 June 1999 defines such insulation levels as nT,w \leq 58 dB and DnT,w \geq 53 dB.

Design example

The acoustic solution proposed by Simpson Strong-Tie[®] comprises an **ABAI** angle bracket and a soundproofing strip. The design calculation is shown below:

 This example is based on a CLT apartment wall. The wall is 95 mm thick, 2.8 m high and 5.0 m long. The room volume is 50 m³.

vibrations.

- The vertical loads are $g_k = 22$ kN/m and $q_k = 19$ kN/m.
- The horizontal loads are F2 = q_k = 6.1 kN at the top of the wall and F5 = qk = 0.5 kN/m at the bottom.
- France's Building Acoustic Performance Regulation of 30 June 1999 defines such insulation levels as $L'_{nTw} \le 58 \text{ dB}$ and $D_{nTw} \ge 53 \text{ dB}$.
- The chosen acoustic insulator is a strip with a working interval between 15 kN/m and 35 kN/m.

The type of insulator depends on the load to be supported:

$$(g_{k}+30\%\times q_{k})\times \frac{100 \text{ mm}}{95 \text{ mm}} = (22+0.3\times 19)\times \frac{100}{95} = 29.2 \text{ kN/m}$$

$$29.2 \text{ kN/m} \leq 35 \text{ kN/m} \rightarrow Ok$$

$$Deformation = \frac{Calculated \ linear \ load - min \ linear \ load}{Max \ linear \ load - min \ linear \ load}$$

 \times (max deformation - min deformation) + min deformation

$$Deformation = \frac{29.2 \text{ kN/m} - 15 \text{ kN/m}}{35 \text{ kN/m} - 15 \text{ kN/m}} \times (1.3 \text{ mm} - 0.5 \text{ mm}) + 0.5 \text{ mm} = 1.1 \text{ mm}$$

 $1.1 \text{ mm} \leq 1.3 \text{ mm} \rightarrow OK$

The ABAI bracket's capacity can be checked with the following formula:

$$\sqrt{\left(\frac{F_{1.d}}{R_{1.d}}\right)^2 + \left(\frac{F_{2/3.d}}{R_{2/3.d}}\right)^2 + \left(\frac{F_{4/5.d}}{R_{4/5.d}}\right)^2} \le I$$

Acoustic performance

Force F1 at the top of the wall can be found with the following equation:

$$-\left(\mathcal{Q}_k \times H \times 6 \times \frac{6}{L^2}\right) + g_k = 0$$

$$-\left(6.1 \ kN \times 2.8 \ m \times \frac{6}{5 \ m^2}\right) + 22 \ kN/m = 17.9 \ kN/m > 0$$

Since the force at the top of the wall is greater than 0, there are no tensile forces. Therefore, $F_1 = 0$.

The horizontal forces are determined as follows:

$$F_{2.d} = \frac{Q_k}{L} \times B \times 1.5 = \frac{6.1 \text{ kN}}{5 \text{ m}} \times 0.5 \text{ m} \times 1.5 = 0.92 \text{ kN}$$

$$F_{5.d} = q_k \times B \times 1.5 = 0.5 \text{ kN/m} \times 0.5 \text{ m} \times 1.5 = 0.38 \text{ kN}$$

The design strength of the brackets is calculated as follows:

$$R_{2.d} = R_{2.k} \times \frac{k_{\text{mod}}}{\gamma_M} = 1.4 \text{ kN} \times \frac{0.9}{1.3} = 0.97 \text{ kN}$$

$$R_{2.d} = R_{2.k} \times \frac{k_{\text{mod}}}{\gamma_M} = 1.6 \text{ kN} \times \frac{0.9}{1.3} = 1.11 \text{ kN}$$

Therefore:

$$\sqrt{\left(\frac{0.92 \text{ kN}}{0.97 \text{ kN}}\right)^2 + \left(\frac{0.38 \text{ kN}}{1.11 \text{ kN}}\right)^2} = 1 \le 1 \text{ The bracket is suitable}$$

Now that the load data have been verified, the acoustic insulation can be checked. In the catalogue "Deckenkonstruktionen für den mehrgeschossigen Holzbau" issued by the Austrian Timber Research Institute, various wall/floor configurations are provided along with the corresponding insulation.

Evidence suggests that the use of timber for construction in seismic areas dates back to at least 10,000 years. Many of the buildings that still stand today provide clear evidence that timber and the associated construction systems are well suited to the forces and stresses caused by seismic events.

Until recently, Europe had experienced very few destructive earthquakes, unlike Japan and the United States, which have played a major role in understanding and developing a scientific approach towards assembly and connection methods in timber constructions.

The types of connectors used, and their materials, have undergone significant changes over the last few decades. Efforts were therefore needed to create an array of design calculations and regulations to understand the systemic behaviour of timber constructions.

1. Background

The whole process of designing timber structures in seismic areas is a complex issue and goes far beyond the metal connectors used.

E5 bracket – used as a truss connector

1.1. Simpson Strong-Tie® connectors

The three-dimensional metal connectors used for timber constructions that have been CE certified according to ETAG 015 and EN 14545 are not specifically tested in seismic conditions.

However, there are fixing accessories, such as anchors, that can be classed as C1 or C2 according to ETAG 001.

When it comes to designing dissipative zones for the connectors and a continuous load transfer, Eurocode 8 specifies two approaches: distribution and dissipation. Where the behaviour factor q is considered to be greater than 1.5, cyclic tests according to EN 12512 can be carried out to determine the dissipative properties of a connector or part of the structure.

1.2. Seismic design: first tests in France

The first cyclic tests on E5 angle brackets were carried out by the FCBA laboratory in Bordeaux in 2005. The data gathered during testing were instrumental in incorporating E5 brackets into the SISBAT and SISMOB research projects aimed at analysing the behaviour of timber buildings during seismic events. The tests performed during the research projects demonstrated that these brackets and the associated construction methods were capable of withstanding seismic stresses according to the French Regulation of 1 April 2011.

Simpson Strong-Tie[®] continued taking part in test programmes during the Woodrise Congress in 2017.

Seismic testing during Woodrise 2017

1.3. R&D laboratories and research

Simpson Strong-Tie[®] has spent several decades investing in internal test equipment and campaigns to improve the development of connectors, anchors and fasteners in seismic conditions. The vast majority of our products are tested inhouse during development.

In an effort to gain a clearer insight into how connectors behave during seismic events, the Group acquired a host of cyclic test systems in the mid-1990s. Research focused on both connector behaviour and the systems with the aim of understanding how parts and components affect the behaviour of the systems and ratifying the regulatory options.

1.3.1. Tyrel Gilb Research Laboratory in Stockton, California

This laboratory was built in 2003 to test full-scale structures subjected to seismic events. Featuring an investment of close to \$10 million, this laboratory simulates earthquakes according to the curves recorded during real seismic activity.

Buildings with up to three storeys can be tested, thereby allowing engineers to analyse the behaviour of the ground floor and intermediate floor. Specific loads can be applied to simulate the weight of several storeys. The laboratory team is led by Steve Pryor, who has been developing research activities for Simpson Strong-Tie[®] since 1997. He is a recognised expert in seismic timber design. He actively takes part in international programmes, including the NEES in Japan in 2009, which involved testing a seven-storey building.

Test of a full-size three-storey building. Simpson Strong-Tie® - Tyrel Gilb Laboratory in Stockton

Informatior

1.3.2. Andris Peterson Laboratory in Tamworth, UK

This laboratory was created in 1997 to support the development of connectors in Europe. The laboratory now focuses exclusively on timber connectors and fasteners, and already has the necessary equipment for carrying out cyclic tests.

Connectors, panel anchors, the Steel Strong-Wall[™] and the system developed for Europe and France in particular are tested in this laboratory. This ensures that products are compliant with all applicable regulations, the supply of specific wood species to the target markets and interactivity with the design teams based in different countries.

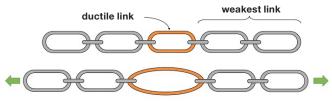
1.4. New builds and renovations

Seismic design generally tends to apply to new builds that need to satisfy regulatory obligations. Discrepancies may arise between the recommended products and the solutions actually implemented due to a lack of knowledge.

The issues often reported are caused by the use of fasteners (nails or screws) that fail to conform to quality specifications (lack of certification) or generally the required quantities. The repercussions in the event of an earthquake could be the early slip of a connector leading to a critical deformation in the building's stability. You are advised to check this particular point.

Reinforcement of the connection with the foundation

Furthermore, a whole range of buildings has been built in accordance with the PS92 standards, which were highly concise for timber constructions, or the Eurocodes and the new seismic zoning regulations enacted in France on 1 May 2011.


The existing timber structure can easily be reinforced to withstand the stresses and forces laid down by the new regulations. Generally speaking, standard connectors and the associated fasteners are sufficient to achieve these objectives. A thorough inspection is recommended of the design and the execution of the metal connector zones considered to be dissipative, regardless of whether the structure is a new build or renovation.

2. Specific features of connectors

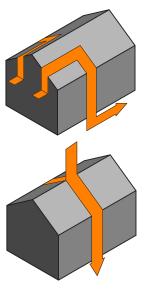
Connectors play an important role in enabling buildings to withstand seismic stresses and forces. Depending on the type of structure, it must fulfil a specific function:

Transfer the forces (distribution) or dissipate the energy (dissipation).

In all cases, it is important to use the connector so as to create a continuous load path.

Principle of conception

The structure must be designed in such a way that fragile elements are sufficiently resistant, so that any ductile elements flex before the fragile elements break.

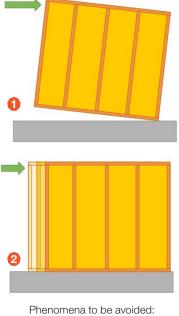

2.1. Continuous load path

In terms of the application directions, seismic forces are often considered to be similar to wind forces. However, wind forces are exerted against the outer surfaces, whereas seismic forces are caused by the movement of the foundations, which displaces the mass constituting the structure. This means that all the rooms in the structure are required to move and not just the outer surfaces. In addition, the quick change in direction during an earthquake means that parts of the building may be required to displace several centimetres before returning to their initial position.

Seismic forces (both horizontal and vertical) depend on the mass of the element that displaces during the earthquake. Consequently, these forces occur in both the roof structure and the floors / walls. They increase as they get closer to the ground, since they tend to build up over time.

One of the key points in seismic design is to ensure that all forces are transferred to the building's foundations. To do so, you must create what is known as a continuous load path. This is a set of components that ensure that the forces are transferred to the foundations as directly as possible.

Connectors are partly important, since they will create a link between the different masses in movement and ensure that the resulting forces are exerted downwards.



2.2. Distribution

There are two possibilities for connectors: the first is called Distribution. In this case, the structure is fairly ductile. The aim is to use connectors to transfer the forces. In this scenario, they act as the weakest link.

This is typically the case with a timber frame house. This type of structure is quite flexible due to the many fixings between the sheathing, studs and rails. In some cases, sheathing may be required on both sides of the timber frame wall panel.

The connector is then responsible for preventing two phenomena that could occur: sliding and overturning.

overturning 1, sliding 2

There are several solutions to overcome this problem, such as anchoring the timber frame, using a continuous tie-down system (currently unavailable in Europe) or implementing a Steel StrongWall[™] stability wall. Each solution addresses a specific need and offers different distribution performance levels.

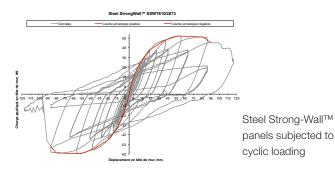
For example, timber frame anchors are suitable for low seismic loads. This type of connector is fixed to the ends of the walls to prevent uplift. They can be reinforced with anchor plugs or pre-grouted rods for earthquake-prone areas (certification: C2 for anchors) to resist the shear forces along the sole plate. Timber frame anchors should not be too flexible, otherwise the studs could be wrenched away from the sole plate.

Where anchors are fitted to the external face of the walls, their behaviour varies according to whether the anchor is fixed to the sheathing or directly to the stud. The maximum load is reduced when timber frame anchors are fixed to the sheathing, but ductility and equivalent viscous damping are slightly improved.

Similarly, the length of the fasteners and the fact that fixings are asymmetric may cause early failure in the studs.

If fasteners are too short in comparison to the thickness of the stud (length of the fastener less than half the thickness of the stud), tensile failure may occur. To avoid this phenomenon, it may be worthwhile using longer fasteners or adding structural screws to the other side of the timber element.

The second solution for distribution is to use a Strong-Wall™.


Example of a timber frame construction with Steel Strong-Wall™

This product is especially suited to situations where space is at a premium and timber frame walls are unable to withstand the forces. The low footprint and rigid design of the Steel Strong-Wall[™] system are invaluable in such cases.

Steel Strong-Wall[™] panels have been subjected to cyclic testing and have demonstrated effective behaviour, meaning that they can be used to withstand seismic forces. **Their behaviour factor is equivalent to a timber frame wall (q=3).**

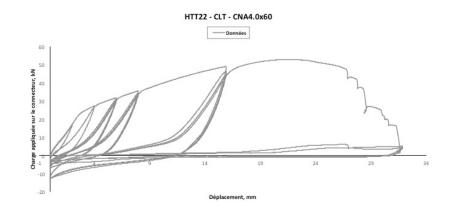
If this type of solution is chosen, the concrete foundation is a critical element, meaning that special care must be taken, since high forces may be exerted on the anchors (> 60 kN in tensile).

It is important to remember that the walls are only part of the structure. The load path must be ensured in all the structural members and also between members. Fixing bands or retaining brackets may need to be added to the horizontal diaphragms or roof structure, so that forces are quickly transferred through all the elements within the structure.

2.3. Dissipation

The other possibility is dissipation. This case is required if the structure is sufficiently rigid. The connector acts as a fuse in the structure and therefore represents the ductile link in the chain. This is the principle chosen for CLT structures. CLT elements are rigid enough to transfer the forces, but they lack flexibility. This is where the connector comes into play. However, using ductile connectors in this type of structure is not enough to guarantee effective performance. Other parameters, such as the dimension ratio of the panels, also have an effect on design performance.

As with the timber frame, it may be worthwhile using specialised products for each force direction. That is why an effective solution is the combined use of wall anchors (HTT22E) and structural angle brackets (ABR255). HTT22E anchors absorb the uplift forces and are fitted at each end of the panel. AE116 structural brackets are placed at regular intervals along the panels and absorb the shear forces.


Other more versatile brackets, such as ABR100, can be used for their good performance in both force directions.

3. Conclusion

It is important to ensure the continuous force path when designing for buildings for earthquake resistance. Care must also be taken to ensure that all connection points are resistant enough to prevent the structure from partially or fully collapsing. With timber frame structures, connections can easily be made with the standard products that are already used for wind resistance. Whether standard tie straps or Steel Strong-Wall™, an end-to-end range of connectors is available in the market to address this particular issue (dissipation or distribution).

HTT22 subjected to Cyclic Loading

Information

General

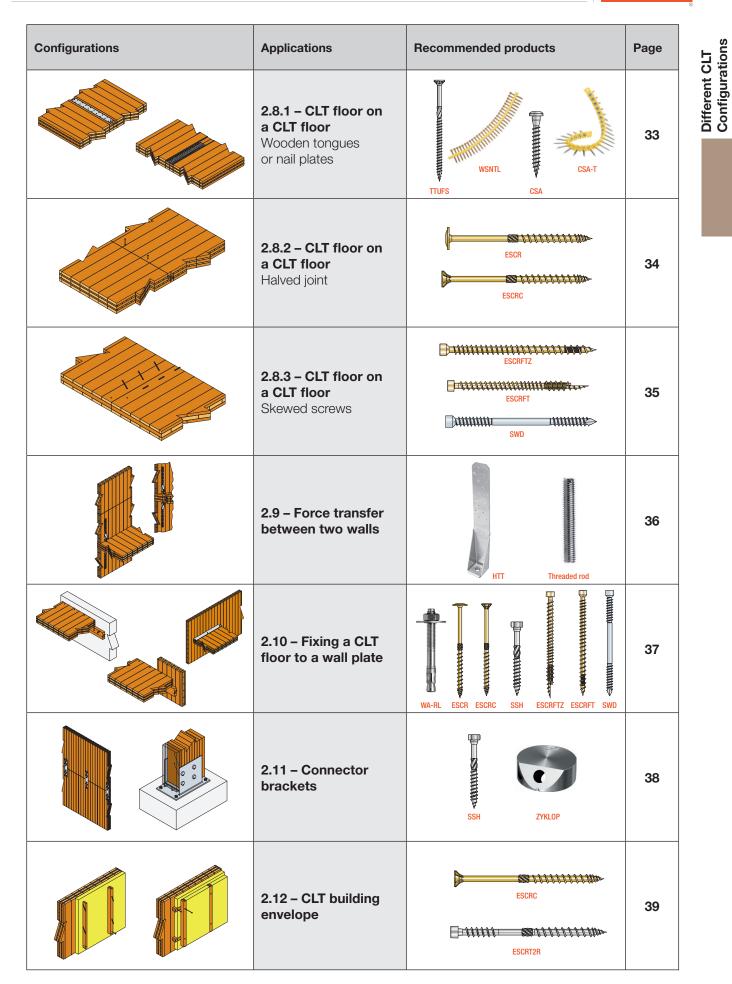
SIMPSON Strong-Tie

Different CLT Configurations

Configuration summary24-2	25
Wall-to-wall connection	26
T-connection between two walls	27
CLT wall on a concrete floor	28
CLT wall on a CLT floor	29
CLT floor on a CLT wall	30
CLT floor on a concrete wall	31
CLT floor on timber joists	32
CLT floor on a CLT floor	33
Wooden tongues or plates	33
Halved joint	34
Skewed screws	35
Force transfer between two walls	36
Fixing a CLT floor to a wall plate	37
Connector brackets	38
CLT building envelope	39

@strongtieUK

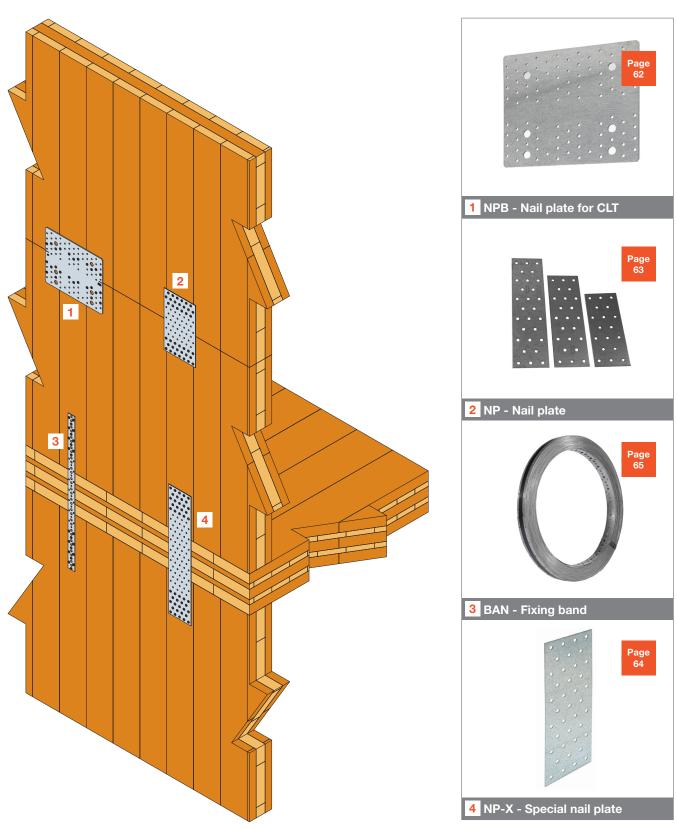
www.strongtie.co.uk


Configuration summary and recommended products

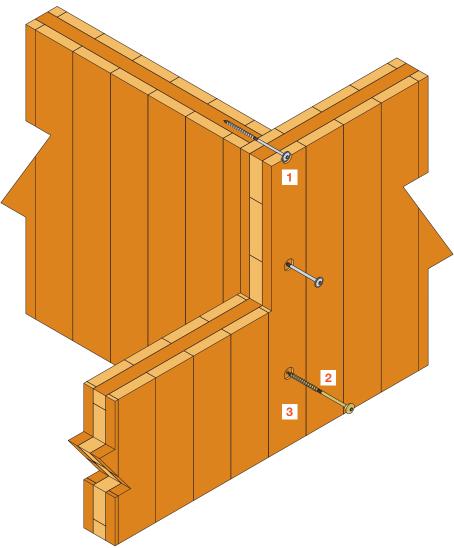
SIMPSON Strong-Tie

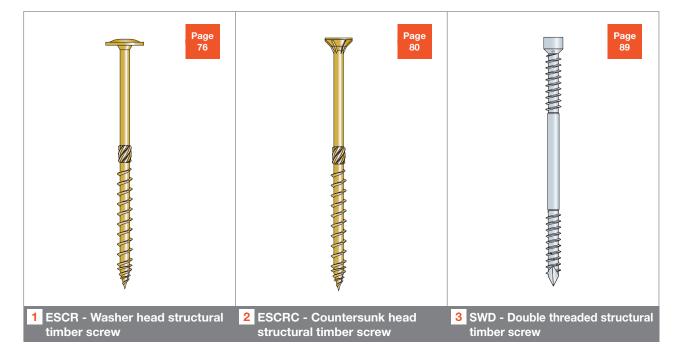
Configurations	Applications	Recommended products	Page
	2.1 – Wall-to-wall connection	NPB NP BAN	26
	2.2 – T-connection between two walls	ESCR ESCR ESCR ESCR ESCRC	27
	2.3 – CLT wall on a concrete floor	NPB ABR255	28
	2.4 – CLT wall on a CLT floor	ABR255 ABR100 AG922 BTALU BTALU	29
	2.5 – CLT floor on a CLT wall	ESCRC STITUTESCRC STITUTESCRC STITUTESCRC STITUTESCRC STITUTESCRC SWD DIMMINING	30
	2.6 – CLT floor on a concrete wall	WA-RL	31
	2.7 – CLT floor on timber joists	ESCR SS 11111111000 ESCRC SS 1111111000 ESCRFTZ 111111111111111111111111111111111111	32

SIMPSON


Configuration summary and recommended products

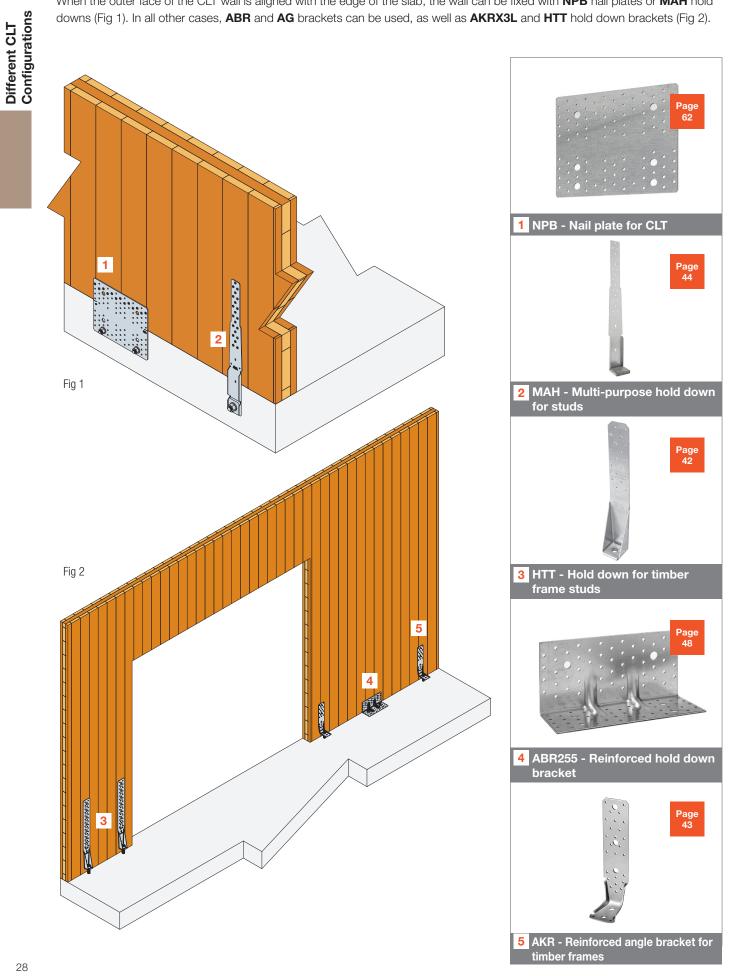
SIMPSON Strong-Tie


2.1 – Wall-to-wall connection

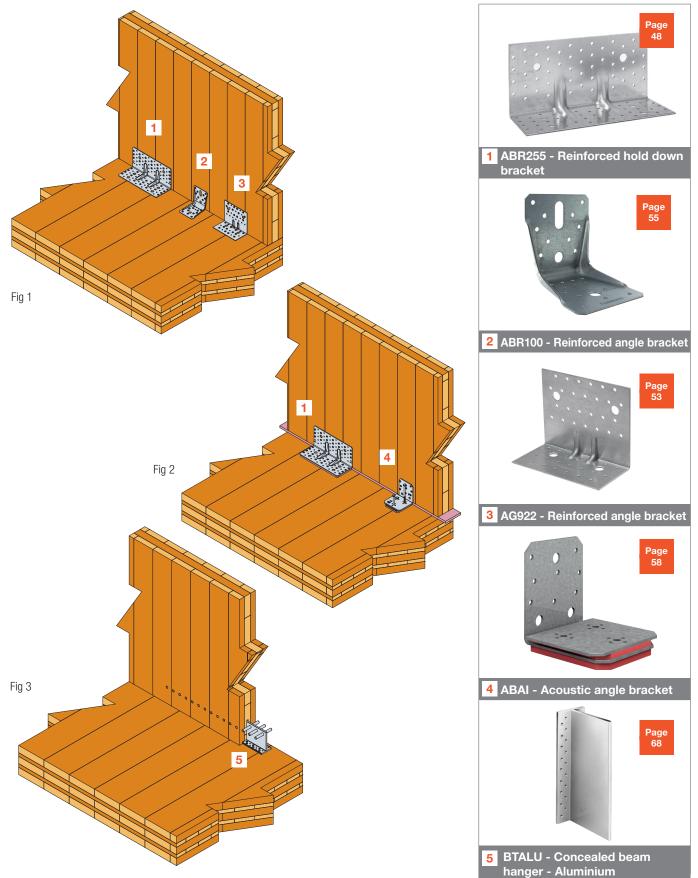

There are different ways to join CLT walls on top of other CLT walls. One solution is to use nail plates to withstand the forces and prevent any uplift. Simpson Strong-Tie[®] offers various solutions, such as **NPB255** nail plates, **NP** nail plates, **NP-X** nail plates and **BAN** fixing bands.

2.2 – T-connection between two walls

Part threaded screws are recommended for joining two walls at a T-connection. The screws ensure that panels are fastened tightly together, while offering good load-bearing performance. **ESCR** part threaded washer head screws, **ESCRC** part threaded countersunk head screws and **SWD** double threaded screws are especially suited to this type of configuration.



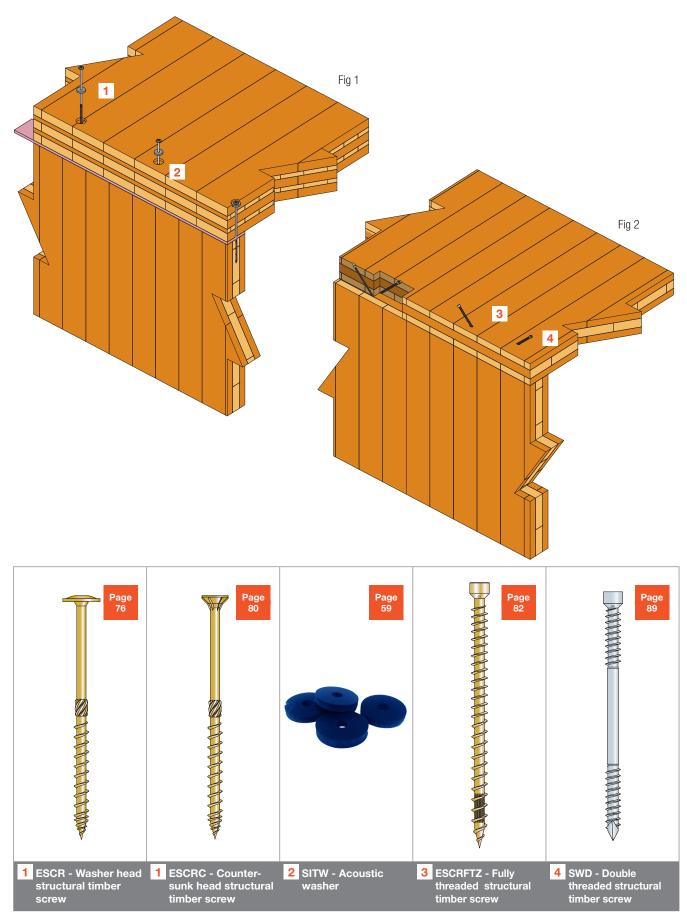
SIMPSON


2.3 - CLT wall on a concrete floor

When the outer face of the CLT wall is aligned with the edge of the slab, the wall can be fixed with NPB nail plates or MAH hold downs (Fig 1). In all other cases, ABR and AG brackets can be used, as well as AKRX3L and HTT hold down brackets (Fig 2).

2.4 – CLT wall on a CLT floor

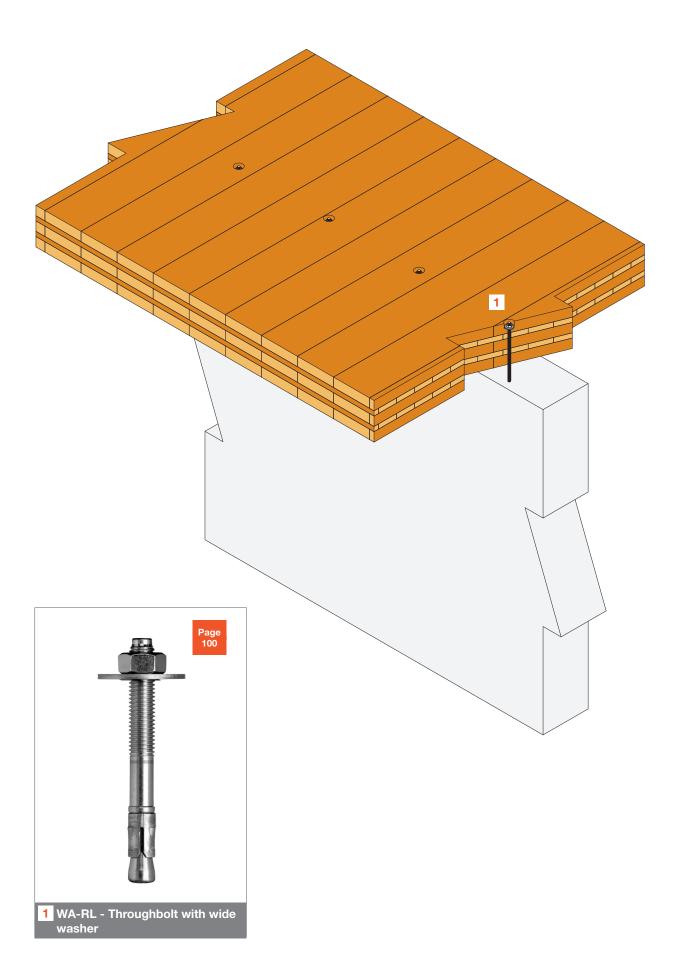
When joining a CLT wall to a CLT floor, a conventional solution is to use such brackets as **ABR255**, **ABR100** and **AG922** (Fig 1). An acoustic resilient strip may be required to reduce sound. In this case, remember to use an appropriate connector, such as the **ABR255** with a SIT acoustic isolating strip or the **ABAI** acoustic angle bracket, to prevent sound transmission (Fig 2). Another solution is to use **BTALU** concealed beam hangers. In this particular case, simply cut a slot in the wall and insert the dowels to ensure a good connection (Fig 3).



SIMPSON

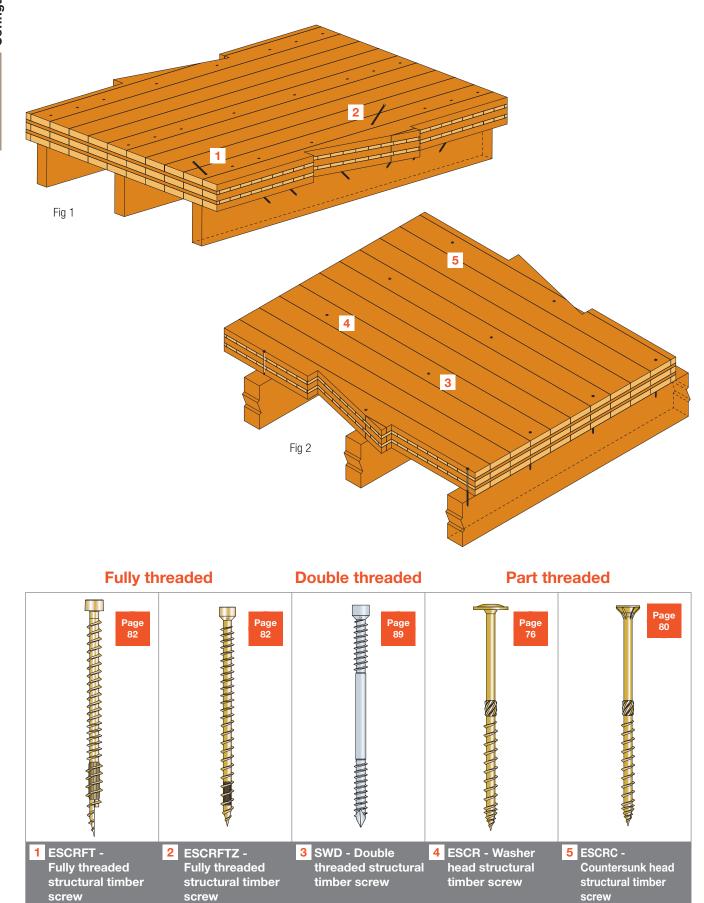
SIMPSON Strong-Tie

2.5 – CLT floor on a CLT wall


When a CLT floor needs to be fixed to the top of a CLT wall, the easiest method is to use **ESCR** or **ESCRC** part threaded screws (Fig 1). If looking to achieve the best acoustic performance, the use of a **SITW** acoustic washer is required. To support higher shear forces, **ESCRFTZ** fully threaded screws or **SWD** double threaded screws should preferably be used at an angle (Fig 2).

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

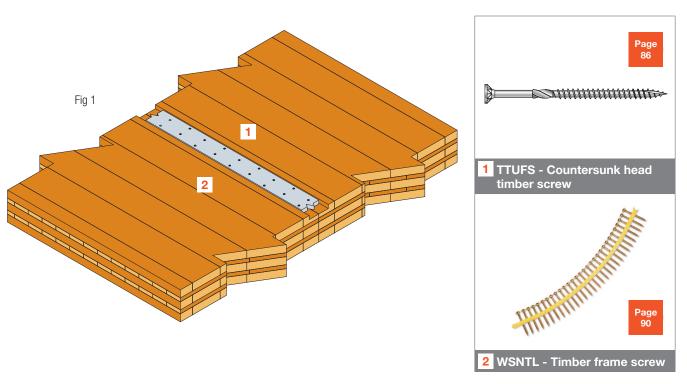
2.6 - CLT floor on a concrete wall


A CLT floor is fixed to a concrete wall using a throughbolt. A wide washer must be used to avoid punching through the panel. **WA-RL** throughbolts are perfectly suited to this type of application.

SIMPSON

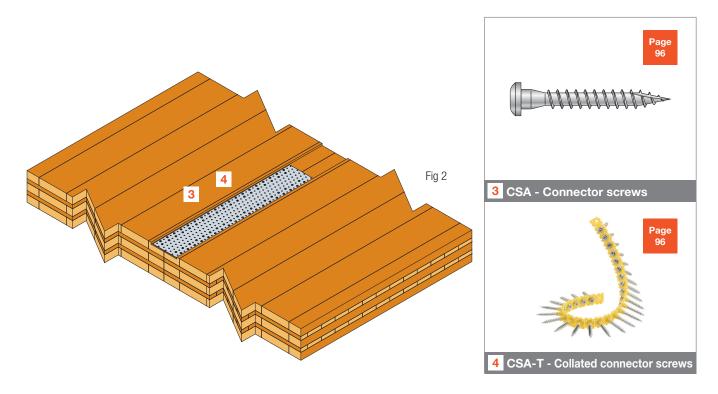
2.7 - CLT floor on joists

When CLT panels are laid on timber joists, they must be secured with screws: either part threaded screws **(ESCR, ESCRC)**, double threaded screws **(SWD)** or fully threaded screws **(ESCRFTZ)** (Fig 1). Using fully threaded screws reduces the number of fixings, but the screws must then be driven in at an angle (Fig 2).


SIMPSON

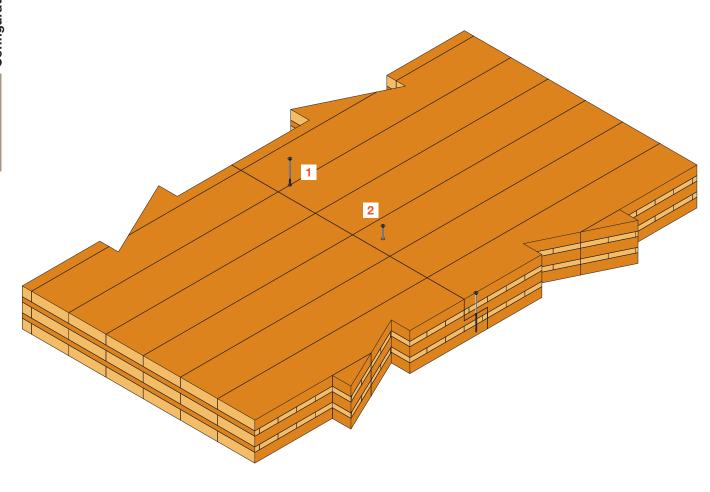
Strong-Tie

2.8.1 – CLT floor on a CLT floor Wooden tongues or plates


Several methods are available for joining two CLT panels in the same plane. One solution is to use plywood or OSB tongues, which are then fixed with the appropriate screws.

Since installation times are a key factor when erecting CLT buildings, it is important to use a mechanised screwing system. In addition to the **TTUFS** loose screws (part threaded countersunk head screws), Simpson Strong-Tie[®] proposes **WSNTL** collated screws that can be used with the Quik Drive system for fast installation (Fig 1).

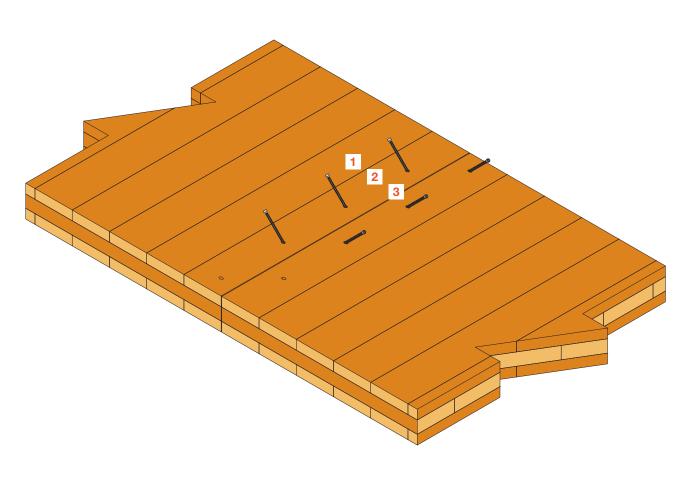
The wooden tongue can be replaced with a perforated plate fixed with **CSA** screws. This method reduces the number of screws for the same load or increases the load-bearing capacity with the same number of screws. CSA screws are available loose **(CSA)** and collated **(CSA-T)**.


For example, at least 30% less screws can be used compared to **WSNTL** screws. Compared to TTUFS loose screws, the saving is at least 20%. Simpson Strong-Tie[®] can also supply custom-sized perforated plates (Fig 2).

2.8.2 - CLT floor on a CLT floor Halved joint

A second solution is available for joining two CLT floors together, namely a halved joint.

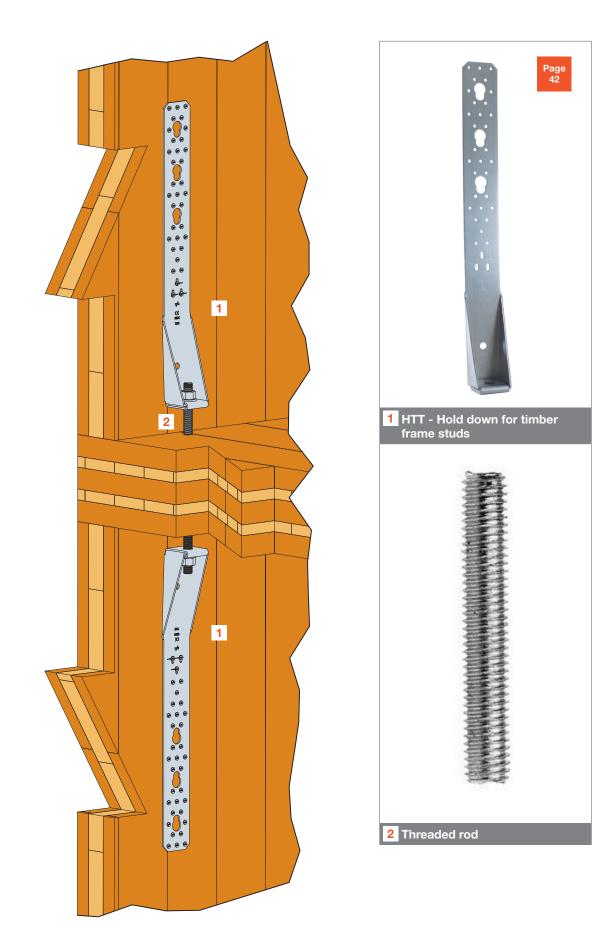
Preferably use part threaded screws (ESCR or ESCRC) to keep both panels butted tightly together.



SIMPSON

2.8.3 - CLT floor on a CLT floor Skewed screws

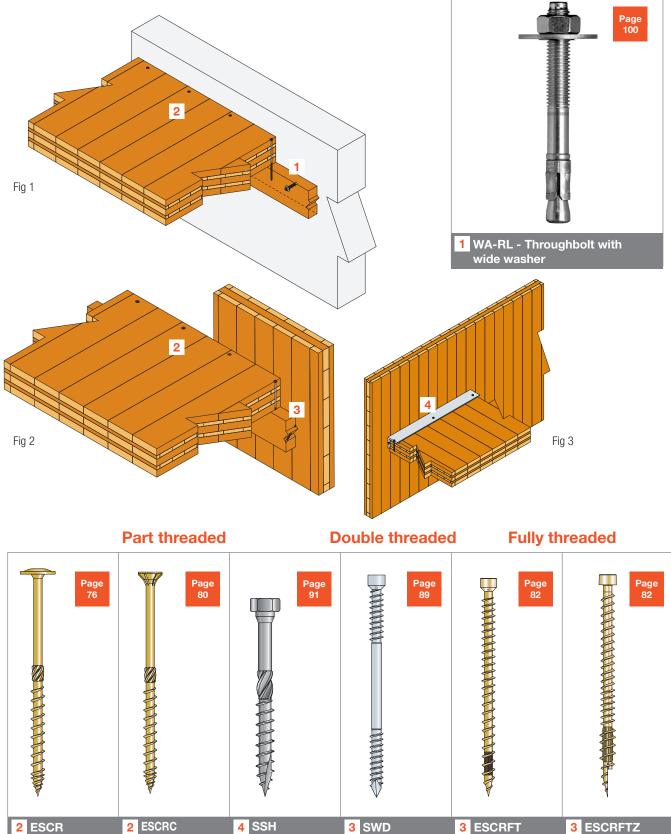
The last solution for joining two CLT floors together involves using pairs of skewed screws. In this case, you are advised to choose fully threaded screws **(ESCRFT** or **ESCRFTZ)** or double threaded screws **(SWD)** to improve the load-bearing capacity.



SIMPSON

2.9 – Force transfer between two walls

Forces can be transferred from one CLT wall to another wall, even in the presence of an intermediate floor. To do so, use timber panel connectors, such as **HTT**, which are connected together using threaded rods.



SIMPSON

2.10 – Fixing a CLT floor to a wall plate

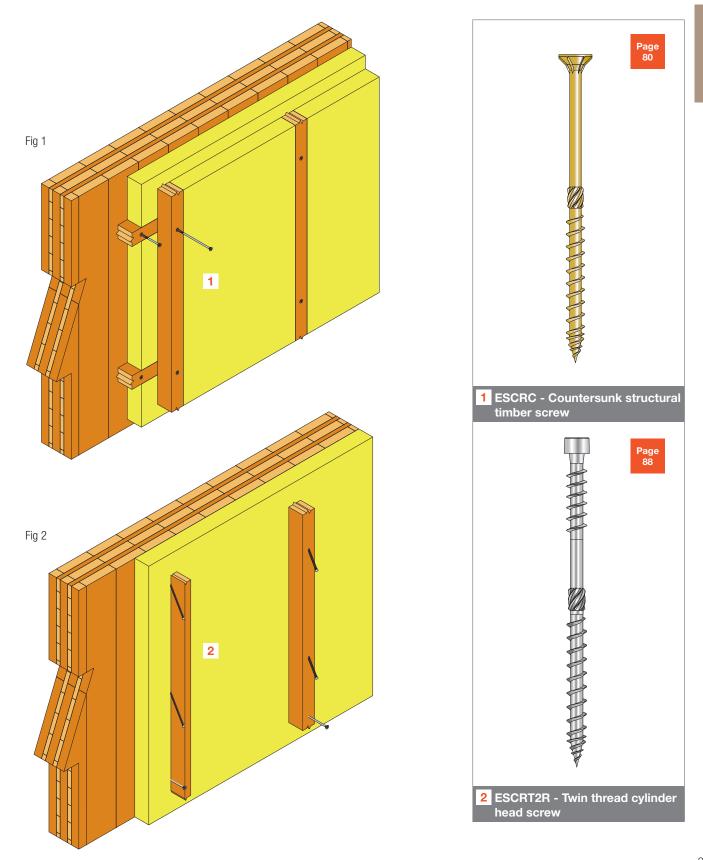
This application raises two question marks: how do you fix the wall plate and how do you fix the floor to the wall plate? The substrate determines how the wall plate is fixed:

- Concrete substrate: preferably use throughbolts with a wide washer, such as WA-RL (Fig 1).
- Timber substrate: preferably use timber screws, such as ESCR, ESCRC, ESCRFTC, ESCRFTZ and SWD (Fig 2).
- There are two separate ways to fix the floor to the wall plate:
- Timber wall plate: fix the floor with ESCR or ESCRC screws (Fig 1 or 2).
- Steel wall plate: fix the floor with **SSH** screws (Fig 3).

SIMPSON

2.11 – Connector brackets

If there are no standard connectors for the required assembly, connector brackets can be made to specification. These brackets are fixed with **SSH** screws or **ZYKLOP**[™] angled washers and screws.


SIMPSON

2.12 – CLT building envelope

When fitting external wall insulation to a CLT building, simply fix a timber frame directly to the CLT with **ESCRC** screws. In some cases, a secondary timber frame may be required, which is also fixed with countersunk head screws (Fig 1).

The other solution involves using screws for the sarking to avoid horizontal studs. **ESCRT2R** screws are perfectly suited to this configuration (Fig 2).

Note: Cladding brackets are not allowed to be used for fixing external wall insulation to a CLT building.

SIMPSON

Hold Downs

HTT Hold down for timber frame studs42
AKR Reinforced angle bracket
for timber frames43
MAH Multi-purpose hold down for studs44

@strongtieUK
♥ f Ⅰ in ▶

PIVETEAU: HEXAPLI

www.strongtie.co.uk

Hold down for timber frame studs HTT

HTT hold downs for timber panels are folded parts that are optimised to withstand uplift forces. They can be used individually or in pairs. They are especially suitable for CLT structures.

The tongue enveloping the two sides at the bottom significantly increases the load-bearing capacity.

Advantages:

• High uplift resistance: ideal for connections to concrete substrates

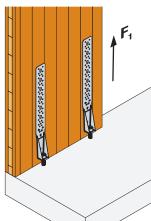
Dimensions

Hold Downs

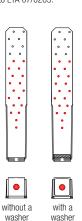
		Dimensions [mm]								Holes Flange A [mm]				Holes Flange B [mm]		
Model No.	A	В	C	D	E	F	G	t	Ø4.7	Ø5	Slots Ø5x12	Ø21	Ø17.5	Ø18	Ø26	
HTT5	404	62	64	11.4	33	-	-	2.8	26	-	-	-	1	-	-	
HTT22E	558	60	63	12.5	33	80	352	3.0	-	31	-	3	-	1	-	
HTT31	785	60	90	12	33	80	340	3.0	-	41	4	6	-	-	1	

Characteristic values

	Faste	eners										
Model No.	Flange A	Flange B		R _{1,k} (+ US50/50/8)								
	Qty	Qty	CNA4.0x50	CNA4.0x60	CSA5.0x50	CSA5.0x80	6 ZYKT69 + 4 CSA5.0x80	CNA4.0x50	CNA4.0x60			
HTT5	18	1 M16	24.7	31.0	-	-	-	24.7	34.2			
HTT22E	26	1 M16	42.3	52.3	52.3	52.3	-	42.3	52.3			
HTT31	45	1 M24	-	-	77.4	77.4	71.2	-	-			


The published characteristic capacity is based on instantaneous load duration and service class 2 according to EC5 (EN 1995) - k_mod = 1,1. For other load duration and service class, please refer to the ETA.

Stiffness


42

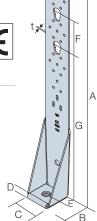
	Faste	eners	Stiffness - C24 Timber on Concrete [kN/mm]									
Model No.	Flange A	Flange B		k _{secR1} k _{secR1} (+US50/5								
	Qty	Qty	CNA4.0x50	CNA4.0x60	CNA4.0x50	CNA4.0x60						
HTT5	18	1 M16	4.5	4.8	-	-	-	9.3	9.9			
HTT22E	26	1 M16	5.1	5.7	6.9	7.2	-	6.6	7.4			
HTT31	45	1 M24	-	-	-	24.3	17.1	-	-			

This table provides the characteristic values for the stiffness of the connection where the number of fasteners corresponds to the quantity specified in the table of characteristic values. For the stiffness values that apply in other cases (quantity / type of fastener), refer to ETA 07/0285.

Other nailing patterns are available in the ETA:

HTT5

.0. <u>.</u> 0 0


//•

HTT31

•

HTT22E

Always CSA in these 4 holes.

Reinforced angle bracket for timber frames AKR

The AKRX3 reinforced angle brackets for timber frames build on the existing range of reinforced brackets offering significant tensile strength. These brackets are recommended for withstanding uplift forces at the timber panel base.

They are capable of supporting forces in all directions $(R_{1,k}, R_{2,k})$.

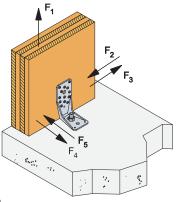
Advantages:

- Anchors the timber frame wall solidly to the ground (recommended in seismic zones)
- · Engineered to withstand tensile forces

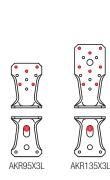
0 0 00 C Δ 0 С B

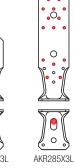
Dimensions

Model No.	C	Dimensio	ons (mm]	-	les A [mm]	Holes Flange B [mm]			
	Α	В	С	t	Ø5	Ø13.5	Ø5	Ø11	Ø13.5x25	
AKR95X3L	95	85	65	3	9	-	2	1	1	
AKR135X3L	135	85	65	3	14	1	2	1	1	
AKR285X3L	285	85	65	3	26	3	2	1	1	

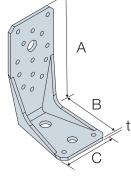

Characteristic values

	Faste	eners	Characteristic Values - C24 Timber on Concrete [kN]							
Model No.	Flange A	Flange B	R	1,k	$\mathbf{R}_{2,k} = \mathbf{R}_{3,k}$					
	Qty	Qty	CNA4.0x50	CNA4.0x60	CNA4.0x50	CNA4.0x60				
AKR95X3L	5	1 Ø12	5.7	6.8	2.0	2.3				
AKR135X3L	8	1 Ø12	10.5	12.4	3.1	3.6				
AKR285X3L	22	1 Ø12	13.1	13.6	2.8	3.5				


The published characteristic capacity is based on short term load duration and service class 2 according to EC5 (EN 1995) – k_{mod} = 1.1. For other load directions, duration, fasteners and service class, please refer to the ETA-07/0285. R_{4k} and R_{5k} are provided in ETA.


Stiffness

	Faste	eners	Stiffness - C24 Timber on Concrete [kN/mm]							
Model No.	Flange A	Flange B	k _{st}	r,R1	k _{ser,R2}					
	Qty	Qty	CNA4.0x50	CNA4.0x60	CNA4.0x50	CNA4.0x60				
AKR95X3L	5	1 Ø12	0.8	1.0	0.3	0.3				
AKR135X3L	8	1 Ø12	1.5	1.7	0.4	0.5				
AKR285X3L	22	1 Ø12	2.8	3.4	0.4	0.5				



This table provides the characteristic values for the stiffness of the connection where the number of fasteners corresponds to the quantity specified in the table of characteristic values. For the stiffness values that apply in other cases (quantity / type of fastener), refer to ETA 07/0285.

Multi-purpose hold down for studs MAH

The MAH485/2 hold down for timber frame studs and its washer are recommended for reinforcing timber frame walls subjected to uplift forces.

Advantages:

- Narrow anchor for use with 45 mm wide timber frame studs
- The double configuration anchors the timber frame wall solidly into a parapet wall or concrete slab (recommended in seismic zones)
- Reinforces the stud/sole plate connection by preventing uplift: energy in the panel is dissipated through the stitching
- Washer supplied and pre-mounted on the bracket

Ε

А

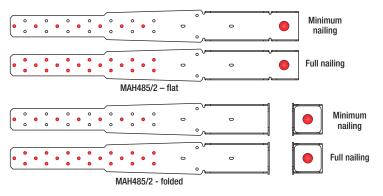
В

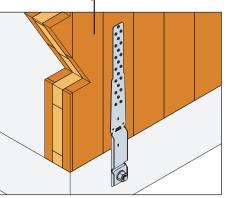
Dimensions

Hold Downs

Madal Na			Dimensio	ons [mm]			Holes Flange A [mm]	Holes Flange B [mm]	
Model No.	Α	В	C	D	E	t	Ø5	Ø18	
MAH485/2	484	53	55	12	40	3	23	1	

Characteristic values


	Fasteners		Characteristic Values - C24 Timber on Concrete [kN]							
Model No.	Flange A	Flange B		R _{1,k}						
	Qty	Qty	CNA4.0x50	CNA4.0x60	CSA5.0x40	CSA5.0x50				
MAH485/2 - Flat	7	1 Ø16	11.6	12.3	11.7	13.7				
MAH485/2 - Folded	7	1 Ø16	11.6	12.3	11.7	13.7				
MAH485/2 - Flat	21	1 Ø16	17.0	17.0	17.0	17.0				
MAH485/2 - Folded	21	1 Ø16	22.4	22.4	17.0	17.0				


The published characteristic capacity is based on instantaneous load duration and service class 2 according to EC5 (EN 1995) $-k_{mod} = 1,1$. For other load duration and service class, please refer to the ETA.

Stiffness

	Faste	eners	Stiffness - C24 Timber on Concrete [kN/mm]							
Model No.	Flange A	Flange B		k _{se}	x.R1					
	Qty	Qty	CNA4.0x50	CNA4.0x60	CSA5.0x40	CSA5.0x50				
MAH485/2 – Flat	7	1 Ø16	3.0	-	-	4.1				
MAH485/2 - Folded	7	1 Ø16	3.9	-	-	5.2				
MAH485/2 – Flat	21	1 Ø16	5.3	-	-	7.2				
MAH485/2 - Folded	21	1 Ø16	6.9	-	-	9.3				

This table provides the characteristic values for the stiffness of the connection where the number of fasteners corresponds to the quantity specified in the table of characteristic values. For the stiffness values that apply in other cases (quantity / type of fastener), refer to ETA 07/0285.

LMAS / AT-HP

F₁

CSA

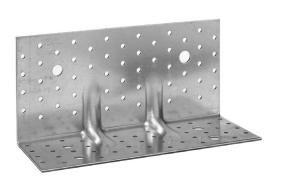
CD

1

Find more information on our website

www.strongtie.co.uk

SIMPSON Strong-Tie


Structural Angle Brackets

9
0
1
2
3
4
5
6
7
8
9
9

@strongtieUK

www.strongtie.co.uk

Structural angle bracket ABR255

These brackets have been especially developed for fixing CLT panels to timber or concrete. These highly versatile brackets are particularly resistant to shear loads due to their enhanced geometrical design.

Advantages:

- Highly versatile
- Superior performance for forces in horizontal (F_2/F_3) and vertical directions (F_1)
- It is possible to use SIT as interim layer for soundproofing

SIMPSON

Strong-Tie

Dimensions

Angle Brackets

Structural

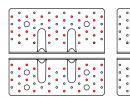
Model No.		Dimensi	ons [mm]		Holes Flange	e A [mm]	Holes Flange B [mm]		
	А	В	C	t	Ø5	Ø14	Ø5	Ø14	
ABR255	120	100	255	3.0	52	2	41	4	

Characteristic values

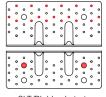
Faste	eners	Characteristic Values - [kN]						
Flange A	Flange B	R _{1,k}	$\mathbf{R}_{2,k} = \mathbf{R}_{3,k}$					
CLT/CLT Connection - Fixing with one angle bracket								
24 CNA4.0x60 21 CNA4.0x60		18.9	31.4					
CLT/Rigid Su	pport Connection - Fixing w	rith one angle bracket						
17 CNA4.0x60	2 Ø12	24.4	26.5					
CLT/CLT Connection - Connector Screws - Fixing with one angle bracket								
2 SSH12x80	4 SSH12x80	13.4	18.4					
	Flange A CLT/CLT 24 CNA4.0x60 CLT/Rigid Su 17 CNA4.0x60 CLT/CLT Connection	CLT/CLT Connection - Fixing with or 24 CNA4.0x60 21 CNA4.0x60 CLT/Rigid Support Connection - Fixing w 17 CNA4.0x60 2 Ø12 CLT/CLT Connection - Connector Screws - Fix	Flange A Flange B Ritk CLT/CLT Connection - Fixing with one angle bracket 24 CNA4.0x60 21 CNA4.0x60 18.9 CLT/Rigid Support Connection - Fixing with one angle bracket 2 012 24.4 17 CNA4.0x60 2 012 24.4 CLT/CLT Connection - Connector Screws - Fixing with one angle bracket 24.4					

The published characteristic capacity is based on short term load duration and service class 2 according to EC5 (EN 1995) $- k_{mod} = 0.9$. For other load duration and service class, please refer to the ETA.

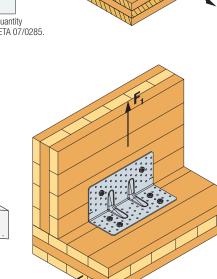
Stiffness


Madal Na	Faste	eners	Stiffness [kN/mm]						
Model No.	Flange A	Flange B	R _{1,k}	$\mathbf{R}_{2,k} = \mathbf{R}_{3,k}$					
	CLT/CLT Connection - Fixing with one angle bracket								
ABR255	24 CNA4.0x60	21 CNA4.0x60	13.4	3.6					
	CLT/Rigid Su	pport Connection - Fixing w	ith one angle bracket						
ABR255	17 CNA4.0x60	2 Ø12	6.4	5.1					
	CLT/CLT Connection - Connector Screws - Fixing with one angle bracket								
ABR255	2 SSH12x80	4 SSH12x80	1.8	2.7					

It is possible to use **SIT** as interim layer for soundproofing.


This table provides the characteristic values for the stiffness of the connection where the number of fasteners corresponds to the quantity specified in the table of characteristic values For the stiffness values that apply in other cases (quantity / type of fastener), refer to ETA 07/0285.

CLT/CLT


fixing with SSH screws

CLT/CLT fixing with CNA nails

CLT/Rigid substrate fixing with CNA nails and M12 bolts

Structural angle bracket ABR255SO

These brackets have been especially developed for fixing CLT panels to timber or concrete. These highly versatile brackets are particularly resistant to shear loads due to their enhanced geometrical design.

Advantages:

- Highly versatile
- Superior performance for forces in horizontal (F_2/F_3) and vertical directions (F_1)

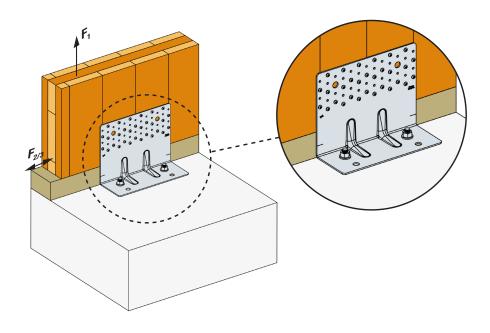
SIMPSON

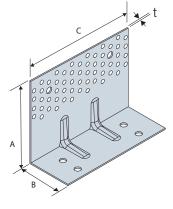
Strong-Tie

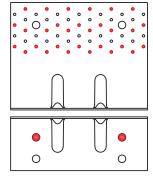
Dimensions

Dimensions [mm]				Holes Flange	e A [mm]	Holes Flange B [mm]		
Model No.	А	В	С	t	Ø5	Ø14	Ø5	Ø14
ABR255SO	197	100	255	3.0	56	2	-	4

Characteristic values


01100 0000011									
Madal Na		Fasteners	Characteristic Values - [kN]						
Model No.	Flange A	Flange B	R _{1,k}	$\boldsymbol{R}_{2,k} = \boldsymbol{R}_{3,k}$					
		CLT/Rigid Support Connection - Fixing wi	th one angle bracket						
ABR255S0 30 CSA5.0x50 2 Ø12 25.4 35.3									
The publiched abo	raatariatia aanaaitu k	based on abort term load duration and service	a alaga O according to ECE (EN	1005) 1/ 0.0					


The published characteristic capacity is based on short term load duration and service class 2 according to EC5 (EN 1995) – $k_{mod} = 0.9$. For other load duration and service class, please refer to the ETA.


Stiffness

Madal Na	Faste	ners	Stiffness	[kN/mm]					
woder no.	Model No. Flange A Flange B		R _{1,k}	$R_{2,k}=R_{3,k}$					
	CLT/Rigid Support Connection - Fixing with one angle bracket								
ABR255S0 30 CSA5.0x50 2 Ø12 3.9 5.7									

This table provides the characteristic values for the stiffness of the connection where the number of fasteners corresponds to the quantity specified in the table of characteristic values. For the stiffness values that apply in other cases (quantity / type of fastener), refer to ETA 07/0285.

Nailing pattern CLT/Rigid substrate fixing with CSA screws and M12 bolts

Structural angle bracket AB255HD

These brackets have been especially developed for fixing CLT panels to timber or concrete. These highly versatile brackets are particularly resistant to shear loads due to their enhanced geometrical design.

Advantages:

- Highly versatile
- Superior performance for forces in horizontal (F₂/F₃) and vertical directions (F₁)

SIMPSON

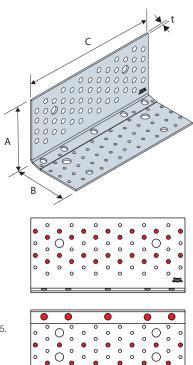
Strong-Tie

Structural Angle Brackets

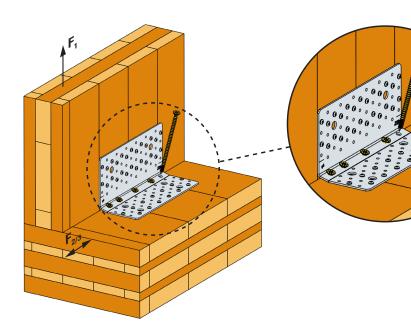
Dimensions

Dimensions [mm]					Holes Flange A [mm] Holes Flange B [mm]			B [mm]
Model No.	A B C t		Ø5	Ø14	Ø5	Ø14		
AB255HD	123	100	255	3.0	56	2	41	4

Characteristic values


Model No.	Madal No	Faste	eners	Characteristic Values - [kN]				
	woder no.	Flange A	Flange B	R _{1,k}	$R_{2,k} = R_{3,k}$			
		Connec	tion CLT/CLT - Fixing with one	angle bracket				
	AB255HD	26 CSA5.0x50	5 ESCRFTC8.0x160 + 13 CSA5.0x50	51.0	46.0			

The published characteristic capacity is based on short term load duration and service class 2 according to EC5 (EN 1995) $-k_{mod} = 0.9$. For other load duration and service class, please refer to the ETA.


Stiffness

Model No.			Stiffness [kN/mm]		
wouer no.	Flange A	Flange B R _{1,k}		$R_{2,k} = R_{3,k}$	
	Connec	tion CLT/CLT - Fixing with one	angle bracket		
AB255HD 26 CSA5.0x50 5 ESCRFTC8.0x160 + 13 CSA5.0x50 12.2 16.0					

This table provides the characteristic values for the stiffness of the connection where the number of fasteners corresponds to the quantity specified in the table of characteristic values. For the stiffness values that apply in other cases (quantity / type of fastener), refer to ETA 07/0285.

Nailing pattern CLT/CLT fixing with CSA and ESCRFTC screws

Structural angle bracket AB255SSH

AB255SSH structural angle brackets are suitable for installing CLT elements on wood using the SSH structural screws.

Advantages:

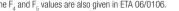
- Highly versatile
- Superior performance for forces in horizontal (F₂/F₂) and vertical directions (F₁)

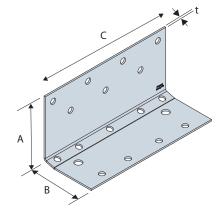
ETA-06/0106

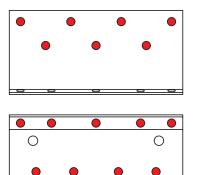
Structural Angle Brackets

SIMPSON

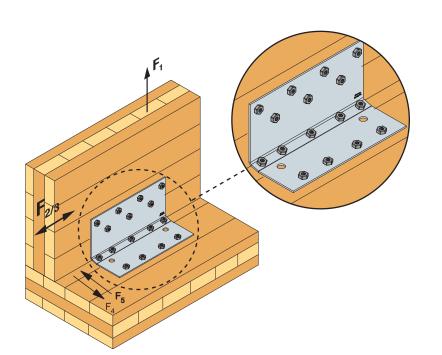
Strong-Tie


Dimensions


Dimensions [mm]					Holes Flange A [mm]	Holes F [m	lange B m]
	Α	В	C	t	Ø11	Ø11	Ø14
AB255SSH	123	100	255	3.0	7	9	2


Characteristic values

Model No.	Faste	eners	Characteristic values [kN]		
Model No.	Model No. Flange A Fl		R _{1,k}	$R_{2,k}=R_{3,k}$	
	CLT/CLT connection	n - Connector screws - Fixi	ng with one angle bracke	t	
AB255SSH	7 SSH10.0x120	9 SSH10.0x120	42.6	42.6	
AB255SSH	7 SSH10.0x160 9 SSH10.0x160		56.2	48.5	


This table provides the characteristic values for the connection where the number of fasteners corresponds to the specified quantity. For the values that apply in other cases (quantity / type of fastener), refer to ETA 06/0106. The F_4 and F_5 values are also given in ETA 06/0106.

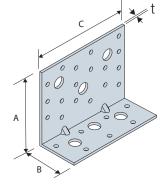
Nailing pattern CLT/CLT fixing with SSH screws

Structural angle bracket AE116

Thanks to its extra-wide design, the AE116 angle bracket is especially suited to withstanding lateral loads. It can be used on both timber and rigid substrates. For installation on rigid substrate remember to use US40/40/10G or US40/50/10G washers.

Advantages:

- High shear resistance
- Versatile

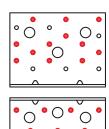


Dimensions

Madal No	Dimensions [mm]				Holes Flange A		Holes Flange B	
Model No.	А	В	C t Screws or n		Screws or nails	Bolts	Screws or nails	Bolts
AE116	90	48	116	3.0	18Ø5	3Ø13	7Ø5	3Ø13

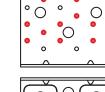
Characteristic values

Model No.	Faste	eners	Characteristic values [kN]						
wouer no.	Flange A		R _{1,k}	$R_{2,k}=R_{3,k}$					
	CLT/CLT connection - Fixing with one angle bracket								
AE116	12 CNA4.0x50 7 CNA4.0x50		3.8	9.9					
	CLT	/rigid substrate conn	ection - Fixing with one angle brack	et					
AE116	12 CNA4.0x50	2 M12	12.6	13.3					
	CLT/CLT connection - Connector screws - Fixing with one angle bracket								
AE116	3 SSH 12x80 3 SSH12x80		16.5	14.7					

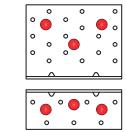


This table provides the characteristic values for the connection where the number of fasteners corresponds to the specified quantity. For the values that apply in other cases (quantity / type of fastener), refer to ETA 06/0106.

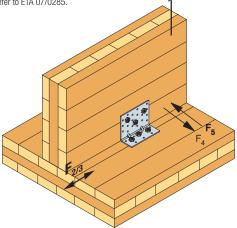
Stiffness


Model No.	Faste	eners	Stiffness	[kN/mm]					
model No.	Flange A	Flange B	R _{1,k}	$R_{2,k}=R_{3,k}$					
	CLT/CLT connection - Fixing with one angle bracket								
AE116	12 CNA4.0x50	7 CNA4.0x50	1.4	1.9					
	CLT/rigid s	substrate connection - Fixin	g with one angle bracket						
AE116	12 CNA4.0x50	2 M12	5.5	4.9					
	CLT/CLT connection - Connector screws - Fixing with one angle bracket								
AE116	3 SSH12x80	3 SSH12x80	1.9	2.4					

This table provides the characteristic values for the stiffness of the connection where the number of fasteners corresponds to the quantity specified in the table of characteristic values. For the stiffness values that apply in other cases (quantity / type of fastener), refer to ETA 07/0285. The F_4 and F_5 values are also given in ETA 06/0106.


CLT/CLT

fixing with CNA nails



CLT/Rigid substrate fixing with CNA nails and M12 bolts and US washer

CLT/CLT fixing with SSH screws

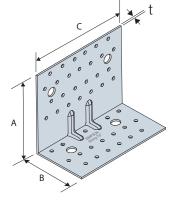
F₁

Reinforced wide angle bracket AG922

Thanks to its extra-wide design, the AG922 angle bracket is especially suited to withstanding lateral loads. It can be used on both timber and rigid substrates.

Advantages:

- High resistance to lateral loads
- Superior rigidity
- Can be fixed to a concrete substrate with mechanical or resin anchors



Dimensions

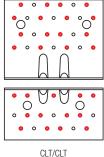
Madal Na	Dimensions [mm]				Holes Flange A		Holes Flange B	
Model No.	Α	В	C	t	Screws or nails	Bolts	Screws or nails	Bolts
AG922	150	121	79	2.5	26 Ø 5	2 Ø 13	18Ø5	2Ø13

Characteristic values

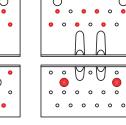
Madal Na	Fast	eners	Characteristic values [kN]						
Model No.	Flange A	Flange B	R _{1,k}	$R_{2,k}=R_{3,k}$					
	CLT/CLT connection - Fixing with one angle bracket								
AG922	16 CNA4.0x50	13 CNA4.0x50	9.2	14.7					
	CLT	/rigid substrate connec	tion - Fixing with one angle bracket						
AG922	16 CNA4.0x50	2 Ø12	15.3	24.1					
	CLT/CLT connection - Connector screws - Fixing with one angle bracket								
AG922 2 SSH12x80 2 SSH12x80		11.5	11.5						

This table provides the characteristic values for the connection where the number of fasteners corresponds to the specified quantity. For the values that apply in other cases (quantity / type of fastener), refer to ETA 06/0106.

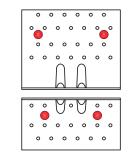
Stiffness

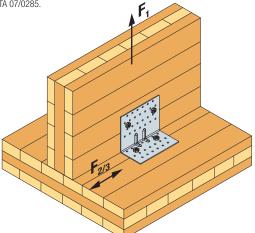

Model No.	Faste	eners	Stiffness	[kN/mm]				
Model No.	Flange A	Flange B	R _{1,k}	$R_{_{2,k}}=R_{_{3,k}}$				
	CLT/CLT connection - Fixing with one angle bracket							
AG922	16 CNA4.0x50	13 CNA4.0x50	2.8	2.1				
	CLT/	rigid substrate connect	ion - Fixing with one angle bracket					
AG922	16 CNA4.0x50	2 Ø12	2.8	3.3				
CLT/CLT connection - Connector screws - Fixing with one angle bracket								
AG922	2 SSH12x80	2 SSH12x80	1.4	1.6				

This table provides the characteristic values for the stiffness of the connection where the number of fasteners corresponds to the quantity specified in the table of characteristic values. For the stiffness values that apply in other cases (quantity / type of fastener), refer to ETA 07/0285.


О

0


0


fixing with CNA nails

CLT/Rigid substrate fixing with CNA nails and M12 bolts

CLT/CLT fixing with SSH screws

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

Angle Brackets Structural

Structural angle bracket E20/3

E20/3 reinforced angle brackets are especially versatile and can be used on both timber and rigid substrates.

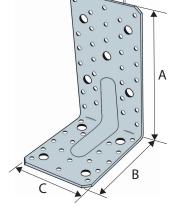
The major central reinforcement delivers excellent performance, particularly on rigid substrates.

Advantages:

- Highly resistant to tensile and shear forces
- Suitable for a wide range of applications
- Withstands forces in different directions (F_1 , $F_{_{2/3}}$)

SIMPSON

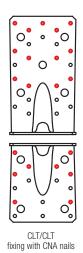
Strong-Tie

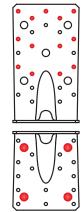

t

Dimensions

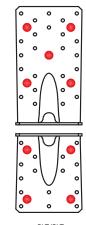
Model No.	Dimensions [mm]				Holes Flange A		Holes Flange B	
	А	В	C	t	Screws or nails	Bolts	Screws or nails	Bolts
E20/3	170	113	95	3.0	24 Ø5	5 Ø11	16 Ø5	4 Ø11

Characteristic values

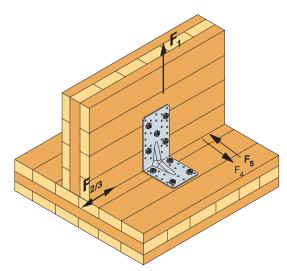

Model No.	Faste	eners	Characteristi	c values [kN]			
MOUEI NO.	Flange A	Flange B	R _{1,k}	$R_{2,k}=R_{3,k}$			
		CLT/CLT connection -	Fixing with one angle bracket				
E20/3	13 CNA4.0x50 8 CNA4.0x50		4.3	7.8			
	CLT	/rigid substrate connec	tion - Fixing with one angle bracket				
E20/3	13 CNA4.0x50	4 Ø10	20.0	14.5			
CLT/CLT connection - Connector screws - Fixing with one angle bracket							
E20/3	20/3 5 SSH10x80 4 SSH10x80		14.5	13.0			



This table provides the characteristic values for the connection where the number of fasteners corresponds to the specified quantity. For the values that apply in other cases (quantity / type of fastener), refer to ETA 06/0106. The F_4 and F_5 values are also given in ETA 06/0106.


Stiffness

Madal Na	Faste	eners	Stiffness	[kN/mm]	
Model No.	Flange A	Flange B	R _{1,k}	$\boldsymbol{R}_{2,k} = \boldsymbol{R}_{3,k}$	
	CLT/	one angle bracket			
E20/3	5 SSH10x80	2.5	2.0		



CLT/Rigid substrate fixing with CNA nails and M10 bolts

CLT/CLT fixing with SSH screws

Structural angle bracket ABR100

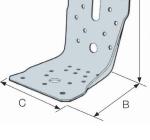
ABR100 reinforced angle brackets are especially versatile and can be used on both timber and rigid substrates. The side reinforcements allow the anchor to be positioned closer to the fold and thereby ensure good load-bearing capacity on the rigid substrate.

Advantages:

- Superior rigidity
- Versatile
- Withstands forces in different directions (F $_{\!\!1},\,F_{\!_{2'\!3}},\,F_{\!_4}$ and F $_{\!_5}\!)$

Dimensions

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.


		Dimensio	ons [mm]			Holes Flange A		Holes F	lange B
Model No.	А	В	C	t	Screws or nails	Bolts	Obround	Screws or nails	Bolts
ABR100	100	100	90	2.0	10Ø5	1 Ø 12	1 Ø 12x32	14Ø5	1 Ø 12

Characteristic values

Madal Na	Faste	eners	Characteristi	c values [kN]				
Model No.	Flange A	Flange B	R _{1,k}	$R_{2,k} = R_{3,k}$				
CLT/CLT connection - Fixing with one angle bracket								
ABR100	8 CNA4.0x50	11 CNA4.0x50	7.9	8.7				
CLT/rigid substrate connection - Fixing with one angle bracket								
ABR100	1 Ø10	5 CNA4.0x50	8.3	4.1				
	CLT/CLT	connection - Connector	r screws - Fixing with one angle bra	cket				
ABR100	2 SSH10x40	1 SSH10x40	2.6	1.4				
	CLT/rigid substrate connection - Connector screws - Fixing with one angle bracket							
ABR100	1 Ø10	1 SSH10x40	2.8	2.0				

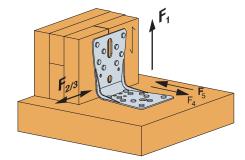
The F_4 and F_5 values are given in ETA 06/0106.

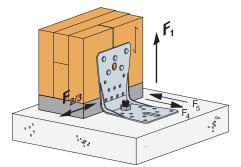
Model No.	Faste	eners	Stiffness	[kN/mm]				
wodel No.	Flange A	Flange B	R _{1,k}	$R_{2,k}=R_{3,k}$				
CLT/CLT connection - Fixing with one angle bracket								
ABR100	8 CNA4.0x50	11 CNA4.0x50	2.6	0.9				
CLT/rigid substrate connection - Fixing with one angle bracket								
ABR100	1 Ø10	5 CNA4.0x50	9.2	1.5				
	CLT/CLT	connection - Connector	screws - Fixing with one angle bra	cket				
ABR100	2 SSH10x40	1 SSH10x40	0.56	0.19				
	CLT/rigid substrate connection - Connector screws - Fixing with one angle bracket							
ABR100	1 Ø10	1 SSH10x40	0.68	0.22				

CLT/CLT fixing with CNA nails

o

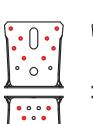
0




CLT/CLT fixing with SSH screws

CLT/Rigid substrate fixing with SSH screw and M10 bolt

The F_4 and F_5 values are given in ETA 06/0106.



C

SIMPSON

Strong-Tie

• 0 •

0

٥ 0

o 0 0 o 0 0 0

o 0

CLT/CLT

0

0

0

0

0

Angle Brackets

Structural

Structural angle bracket ABR9020

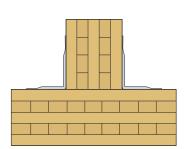
The ABR9020 reinforced angle bracket is especially versatile.

Advantages:

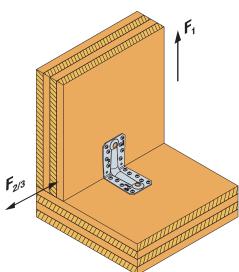
- Superior rigidity
- Versatile
- Withstands forces in different directions (F₁ and F_{2/3})

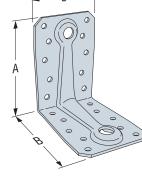
SIMPSON

Strong-Tie


		Dimensio	ons [mm]		Holes F	lange A	Holes F	lange B
Model No.	А	В	C	t	Screws or nails	Bolts	Screws or nails	Bolts
ABR9020	90	90	65	2.5	10Ø5	1 Ø 11	10Ø5	1 Ø 11

Characteristic values


Dimensions


Model No.	Faste	eners	Characteristic values [kN]		
mouer no.	Flange A	Flange B	R _{1,k}	$R_{2,k}=R_{3,k}$	
	CLT/	CLT connection - Fixing with	n one angle bracket		
ABR9020	4 CNA4.0x50	10 CNA4.0x50	9.0	2.0	

This table provides the characteristic values for the connection where the number of fasteners corresponds to the quantity specified in the table. For the values that apply in other cases (quantity / type of fastener), refer to ETA 06/0106.

CLT/CLT fixing with CNA nails

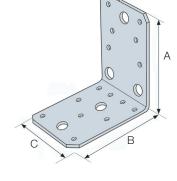
Structural angle brackets AB90 / AB105

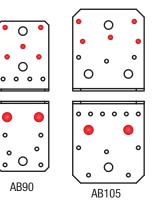
AB90 and AB105 angle brackets are especially versatile and can be used on timber substrates.

Advantages:

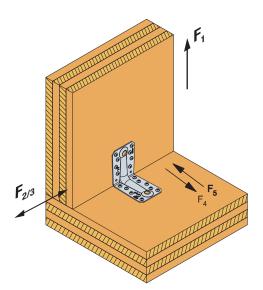
- Versatile
- Withstands forces in different directions (F_1 , $F_{2/3}$, F_4 and F_5)

Dimensions


C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.


		Dimens	ions (mm)		Holes F	lange A	Holes Flange B		
Model No.	А	В	C	t	Screws or nails	Bolts	Screws or nails	Bolts	
AB90	88	88	65	2.5	6 Ø5	3 Ø11	9 Ø5	2 Ø11	
AB105	103	103	90	3.0	8 Ø5	3 Ø11	11 Ø5	3 Ø11	

Characteristic values


		Fasteners		Characteristic Values - CLT/Rigid Substrate [kN]			
Model No.	Flange A	ge A Flange B		R _{1,k}	$R_{2,k} = R_{3,k}$		
	Qty	Qty	Туре	CNA4.0x50	CNA4.0x50		
AB90	5	2	M10	3.0	3.1		
AB105	5	2	M10	6.2	3.2		

The published characteristic capacity is based on instantaneous load duration and service class 2 according to EC5 (EN 1995) – k_{mod} = 0.9. For other load duration and service class, please refer to the ETA. For $\rm F_4$ and $\rm F_5$ values refer to the ETA.

CLT/Rigid substrate fixing with CNA nails and M10 bolts

SIMPSON

Acoustic angle bracket ABAI

The ABAI acoustic angle bracket breaks new ground by combining the qualities of a conventional angle bracket with the SIT acoustic isolating strip. It can be used to join CLT wall and floor members together, while guaranteeing acoustic insulation between the elements.

Advantages:

- Reduced sound transfer between structural components
- Improved draught sealing when used with 12 mm insulating strips beneath the external walls
- Fast installation

0

В

0

C

С

SIT acoustic isolating strip

Dimensions

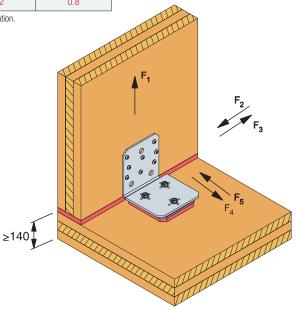
Model No.		Dimensio	ons [mm]		Holes F	lange A	Holes Flange B	
	А	В	C	t	Screws or nails	Screws	Screws or nails	Screws
ABAI105	111	103	90	3.0	8Ø5	3Ø11	-	3Ø7

Characteristic values

		Fasteners		Characteristic Values - CLT/Rigid Substrate [kN]					
Model No.	Flange A	Flan	ge B	R _{1,k}	$R_{_{2,k}}=R_{_{3,k}}$	R _{4,k}	R _{5,k}		
	Qty	Qty Type		CNA4.0x60	CNA4.0x60	CNA4.0x60	CNA4.0x60		
ABAI	8	3	SDS25600	2.2	2.2	3.7	2.6		

This table provides the characteristic values that correspond to values that are restricted to a low level of deformation. Therefore, they are effective at screening out vibrations and can be used for SLS calculations.

		Fasteners		Characteristic Values - CLT/Rigid Substrate [kN]				
Model No. Flange A Flange B		R _{1,k}	$\mathbf{R}_{1,k} \qquad \qquad \mathbf{R}_{2,k} = \mathbf{R}_{3,k}$		R _{5,k}			
	Qty	Qty	Туре	CNA4.0x60	CNA4.0x60	CNA4.0x60	CNA4.0x60	
ABAI	8	3	SDS25600	7.9	5.9	7.3	5.4	


This table provides the ultimate characteristic values. When used for sizing, filtration cannot be ensured, but these values can be used for ULS calculations according to EN 1995-1-1.

Stiffness

Madal Na	Faste	eners	Stiffness [kN/mm]								
Model No.	Flange A	Flange B	R _{1,k}	$R_{2,k} = R_{3,k}$	R _{4.k}	R _{5.k}					
	CLT/CLT connection - Fixing with one angle bracket										
ABAI105	8 CNA4.0x60	3 SDS25600	0.8	0.7	1.2	0.8					

This table provides the characteristic values that correspond to values that are restricted to a low level of deformation. Therefore, they are effective at screening out vibrations.

Angle Brackets

Structural

Acoustic isolating strip SIT

SIT acoustic isolating strips are recommended for CLT buildings that are required to deliver superior acoustic performance. They guarantee acoustic insulation between timber walls and floors. The choice of the strip's density depends on the weight of the wall.

Advantages:

- Absorbs vibrations
- Can be used in humid environments
- Estimated service life of 50 years
- Improved draught sealing

Dimensions

	75	150	350	750	1500	
Item code	SIT75-100	SIT150-100	SIT350-100	SIT750-100	SIT1500-100	
Colour	yellow	green	blue	red	orange	
Static pressure [N/mm ²] (1)	0.075	0.15	0.35	0.75	1.5	
Dynamic pressure [N/mm ²] ⁽¹⁾	0.12	0.25	0.5	1.2	2	
Peak pressure [N/mm ²] ⁽¹⁾	2	3	4	6	8	
Mechanical loss factor (2)	0.06	0.03	0.03	0.04	0.05	DIN 53513 (3)
Static E-modulus [N/mm ²] (2)	0.63	1.25	2.53	5.21	9.21	DIN 53513 (3)
Dynamic E-modulus [N/mm ²] (2)	0.92	1.65	3.25	8.88	16.66	DIN 53513 (3)
Static shear modulus [N/mm ²] (2)	0.16	0.22	0.35	0.8	1.15	DIN 53513 (3)
Dynamic shear modulus [N/mm ²] (2)	0.27	0.35	0.52	1.22	1.69	DIN 53513 (3)
Compressive strength at 10% deformation [N/mm ²]	0.083	0.16	0.32	0.59	0.94	
Permanent deformation after compression [%]	< 5	< 5	< 5	< 6	< 8	DIN ISO 1856
Tensile strength [N/mm ²]	> 1.5	> 2.0	> 3.5	> 5.0	> 7.0	DIN 53455-6-4
Elongation at break [%]	> 500	> 500	> 500	> 500	> 500	DIN 53455-6-4
Tear resistance [N/mm]	> 1.6	> 2.1	> 2.5	> 4.3	> 5.6	DIN ISO 34-1/A
Rebound elasticity [%]	70	70	70	70	70	DIN EN ISO 8307
Volume resistivity [Ω·cm]	> 1011	> 1011	> 1011	> 1011	> 1011	DIN IEC 93
Thermal conductivity [W/(m·K)]	0.06	0.075	0.09	0.1	0.11	DIN 52612-1
Operating temperature [°C]			-30 to +70			
Extreme temperature [°C]			120			
Flammability		EN ISO 11925-1				

⁽¹⁾ Values apply for a shape factor of q = 3

⁽²⁾ Measured by the upper limit of the static performance sector

⁽³⁾ Measurements performed in accordance with the model indicated in the applicable standard

Acoustic isolating washer SITW

SITW washers are combined with SIT isolating strips to create a high-performance system in CLT buildings that are required to deliver superior acoustic performance. The isolating washer is fitted between a metal washer and the CLT when assembling with screws, which prevents vibrations from spreading through the fastenings.

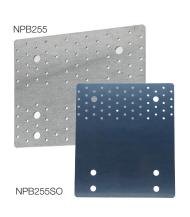
Advantages:

- Reduced sound transfer between structural components
- Improved draught sealing

Dimensions

Model No.	Corour diamotor		Washer dimensi	Pilot holes [mm]			
	Screw diameter [mm]	Inner diameter	Outer diameter	iter diameter Thickness Tolei		Inner diameter	Outer diameter
SITW-M0608	6 and 8	8.5	34	6	0.5	8 or 10	35
SITW-M1012	10 and 12	12.5	49	6	0.5	12 or 14	50

Simply drill pilot holes in the first CLT panel to avoid transferring vibrations through the flat part of the screw.


Nail Plates and Fixing Bands

NPB Nail plate for CLT	62
NP Nail plate	63
NP-X Custom-designed nail plate	64
BAN Fixing band	65

@strongtieUKfff

www.strongtie.co.uk

Nail plate for CLT NPB

The NPB255 nail plate has been especially developed for fixing CLT panels to timber or concrete substrates. This highly versatile plate features a marking line to help align both parts to be joined.

Advantages:

- Ideal for use with CLT buildings
- Easy installation with a marking line for aligning both parts to be joined
- Highly versatile: can be fixed to timber and concrete substrates
- Superior performance for forces in horizontal (F_2/F_3) and vertical directions (F_1)

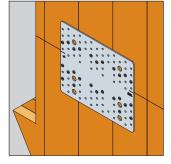
R

A

Dimensions

Nail Plates and Fixingg Bands

Model No.		Dimensions [mm]		Holes			
	А	В	t	Screws or nails	Bolts		
NPB255	214	255	3	52 Ø 5 + 2 Ø14	41 Ø 5 + 4 Ø14		
NPB255SO	294	255	3	52 Ø 5 + 2 Ø14	4 Ø14		


Characteristic values

	Fasteners			Characteristic values - C24 graded timber on C24 graded timber [kN] - 1 Nail Plate							
Model No.	Fixing pattern	Flange A	Flange B		R	1,k		$\boldsymbol{R}_{2,k}=\boldsymbol{R}_{3,k}$			
		Qty	Qty	CNA 4.0x35	CNA 4.0x50	CNA 4.0x60	CSA 5.0x50	CNA 4.0x35	CNA 4.0x50	CNA 4.0x60	CSA 5.0x50
	1	11	15	17.9	23.9	26.0	27.6	15.6	20.8	22.6	24.0
	2	13	15	21.2	28.3	30.7	32.6	14.5	19.4	21.0	22.3
NPB255	3	30	34	-	-	-	-	-	-	-	44.0
	4	11	2 Ø12	17.9	23.9	26.0	27.6	17.1	22.8	24.8	26.3
	5	13	2 Ø12	21.2	28.3	30.7	32.6	16.7	22.3	24.2	25.7
NPB255S0	6	26	2 Ø12	42.4	56.6	61.4	65.3	16.1	21.5	23.3	24.8

This table provides the characteristic values for the connection where the number of fasteners corresponds to the quantity specified in the table. For the values that apply in other cases (quantity / type of fastener), please contact the technical services department.

Stiffness

	I	astener	s	Stiffness - C24 graded timber on C24 graded timber [kN/mm] - 1 NPB255									
Model No.	Fixing	Flange A	Flange B		k _{si}	er.R1		k _{ser.R2}					
	pattern	Qty	Qty	CNA 4.0x35	CNA 4.0x50	CNA 4.0x60	CSA 5.0x50	CNA 4.0x35	CNA 4.0x50	CNA 4.0x60	CSA 5.0x50		
	1	11	15	1.9	2.5	2.7	6.3	1.4	1.9	2.1	4.8		
	2	13	15	2.2	3.0	3.2	7.4	1.0	1.4	1.5	3.5		
NPB255	3	30	34	-	-	-	-	-	-	-	5.7		
	4	11	2 Ø12	2.5	3.4	3.6	6.0	2.3	3.0	3.3	5.4		
	5	13	2 Ø12	3.0	4.0	4.3	7.1	1.8	2.5	2.7	4.4		

This table provides the characteristic values for the connection where the number of fasteners corresponds to the quantity specified in the table. For the values that apply in other cases (quantity / type of fastener), please contact the technical services department.

						0 0 0 0
1	2	3	4	5	6	

Nail plate **NP**

Dimensions

Model No.

NP20/40/120

NP20/60/160

NP20/60/200

NP20/80/160

NP20/80/200

NP20/80/240

NP20/100/160

NP20/100/200

NP20/100/240

NP20/120/160

NP20/120/240

NP20/120/300

Dimensions [mm]

В

120

160

200

160

200

240

160

200

240

160

240

300

А

40

60

60

80

80

80

100

100

100

120

120

120

NP nail plates are suited to a wide range of applications, especially for butt joints, post & beam connections, CLT panel assemblies and connections where nail plates need to be folded on site.

Advantages:

Holes

Diameter

Ø5

Qty

9

20

25

28

35

42

36

45

54

44

66

83

- · Suitable for a wide range of applications
- Can be folded on site

Characteristic Tensile

Capacity R_{1.st} [kN]

17.8

26.7

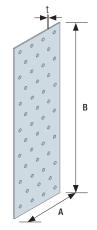
26.7

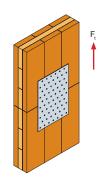
35.6

35.6

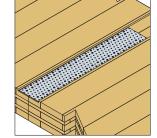
35.6

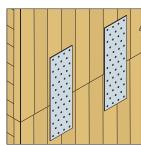
44.6


44.6


44.6

53.5


53.5


53.5

NP20/140/200 140 200 2 65 Ø5 62.4 NP20/140/240 140 240 2 78 Ø5 62.4 The maximum characteristic value tolerated under tensile load corresponds to the plate's maximum tensile strength. The fasteners

t

2

2

2

2

2

2

2

2

2

2

2

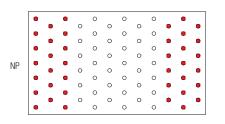
2

must be checked separately using EN 1995-1-1. The characteristic resistance of an NP nail plate assembly under tensile load R_{1,k} is: $R_{l.k} = \min \left(R_{l.st} / k_{mod}; R_{upper}; R_{lower} \right)$

Where:

R_{1.st} the maximum characteristic value tolerated under tensile load as specified in the table above.

 $R_{upper}^{I,st}$ the resistance of the group of fasteners in the upper wall


 R_{lower}^{upper} the resistance of the group of fasteners in the lower wall $R_{upper}^{P} = n_{efupper} \times R_{lat.k}$ $R_{lower} = n_{eflower} \times R_{lat.k}$

Where:

 $\begin{array}{l} n_{e^{fupper}} \\ in the effective number of fasteners in the upper wall \\ n_{e^{flower}} \\ in the effective number of fasteners in the lower wall \\ R_{lat,k} \\ intersteen \\ interst$

Example: NP20/140/240 joining two CLT walls. The aim is to determine the plate's load-bearing capacity when subjected to tensile forces. The nailing pattern shown below is used. The following table provides the characteristic strength values ($k_{mod} = 1.1$).

Model No.	Fasteners									
	CNA4.0x35	CNA4.0x60	CSA5.0x40	CSA5.0x50						
NP20/140/240	31.5	44.8	42.7	50.5						

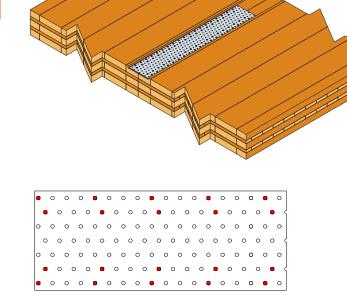
Related products

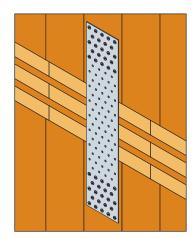
Custom-designed nail plate NP-X

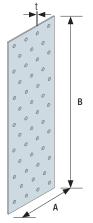
NP-X nail plates are made to your specifications. Therefore, they can be produced in the required dimensions to fit your project requirements. They can be used to join two CLT slab elements with a metal tongue instead of a plywood or OSB tongue. Advantages: · Suitable for a wide range of applications • Can be folded on site Z275 20 um EN14545

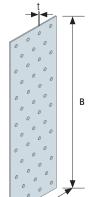
Dimensions

Nail Plates and Fixingg Bands


Madal Na		Dimensions [mm]		Holes			
Model No.	А	В	t	Qty	Diameter		
NP-X	Х	Y	2	n	Ø5		


"X" and "Y" are custom dimensions. The number of drill holes "n" depends on the size of the plate.

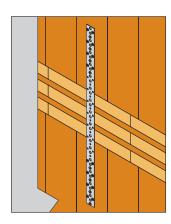

Example: NP/X where A = 500 mm and B = 140 mm for use as a tongue.


The following nailing plan can be used to enhance the fixing. It can be used to maximise fastenings and achieve an effective number of fastenings "nef" equal to the number of fastenings "n", even with CSA screws. The spacing between screws in the same grain is greater than 14xd.

When associated with CSA-T collated screws, steel tongues are capable of absorbing up to an extra 30% of the forces with the equivalent number of fastenings compared to plywood or OSB tongues. This solution reduces the number of fastenings and therefore saves time at the construction site.

Fixing band **BAN**

BAN fixing bands are suited to a wide range of applications, especially for butt joints, post & beam connections, CLT panel assemblies and connections where nail plates need to be folded on site.


Advantages:

- Flexible installation
- Resistance to uplift forces

Dimensions

Model No.		Dimensions		Holes [mm]	Characteristic Tensile
woder no.	Width [mm]	Length [m]	t [mm]	Round	Capacity R _{1,st} [kN]
BAN094025	40	25	0.9	Ø5	17.8
BAN102003	20	3	1.0	Ø5	4.0
BAN102010	20	10	1.0	Ø5	4.0
BAN102010S	20	10	1.0	Ø5	4.0
BAN102025	20	25	1.0	Ø5	4.0
BAN152010	20	10	1.5	Ø5	6.0
BAN152025	20	25	1.5	Ø5	6.0

The maximum characteristic value tolerated under tensile load corresponds to the plate's maximum tensile strength. The fasteners must be checked separately using EN 1995-1-1. The characteristic resistance of an BAN fixing band assembly under tensile load $R_{l,k}$ is: $R_{l,k} = min(R_{l,s}; R_{upper}; R_{lower})$

Where:

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

 $R_{I,st}$: the maximum characteristic value tolerated under tensile load as specified in the table above.

 $R_{upper}^{r,lst} = n_{efupper} \times R_{la.k} \quad R_{lower} = n_{eflower} \times R_{la.k}$ the resistance of the group of fasteners in the lower wall R_{lower} : the resistance of the group of fasteners in the lower wall R_{lower} .

Where

the effective number of fasteners in the upper wall $n_{eflower}$: the effective number of fasteners in the lower wall R_{lack} : the strength of the chosen fastener

Example: BAN094025 joining two CLT walls with an intermediate floor. The aim is to determine the fixing band's load-bearing capacity when subjected to tensile forces. The nailing pattern shown below is used. The following table provides the characteristic strength values.

SIMPSON Strong-Tie

Concealed Connectors

BTALU Concealed beam hanger,
aluminium68
BTC Concealed beam hanger
for concrete

@strongtieUK
Image: Im

www.strongtie.co.uk

Aluminium concealed beam hanger **BTALU**

This aluminium hanger can be used to create a completely invisible connection for large section beams. It can also be used at the base of a wall for a completely concealed assembly, where it resists against uplift and lateral forces. The BTALU connector is supplied in bars of 1,180 mm.

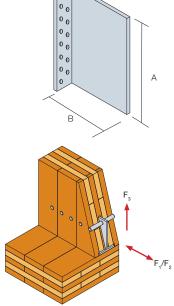
It can be cut according to requirements. The drill holes for the dowels are made at the same time as those in the timber.

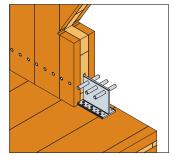
Advantages:

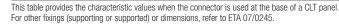
- 1200 mm bar to be cut according to the height of the supported beam
- Possibility of supporting beams up to a height of 900 mm
 30-minute fire-resistance rating according to certain recommendations. Refer to our fire resistance documentation on the Internet

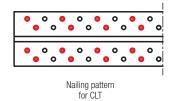
С

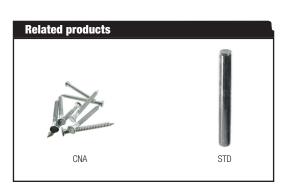
0


¥€t


Dimensions


Model No.		Dimensions [mm]									
	А	В	C	t	Screws or nails						
BTALU1200	1180	109	62	6	Ø 5						


Characteristic values


		Fasten	ers		Characteristic values [kN]								
Model No.		lange C (nails)		nge B wels)			R _{3.k}						
	0.5.4	Tuno	05.	Turno	CNA4.0x50								
	Qty	Туре	Qty	Туре	60	80	100	120	140	160			
BTALU1200/120	12	CNA4.0x50	3	STD12	14.7	15.5	16.6	17.9	19.4	20.7	5.9		
BTALU1200/160	16	CNA4.0x50	4	STD12	23.2	24.4	26.0	27.9	30.0	32.0	7.8		
BTALU1200/200	20	CNA4.0x50	5	STD12	32.4	34.1	36.2	38.7	41.2	43.4	14.7		
BTALU1200/240	24	CNA4.0x50	6	STD12	42.1	44.3	46.8	49.7	52.3	53.2	12.0		
BTALU1200/280	28	CNA4.0x50	7	STD12	52.0	54.7	57.5	60.5	62.0	62.0	14.0		
BTALU1200/320	32	CNA4.0x50	8	STD12	61.8	65.1	68.1	70.7	70.9	70.9	16.0		
BTALU1200/360	36	CNA4.0x50	9	STD12	71.7	75.5	78.5	79.8	79.8	79.8	18.0		
BTALU1200/400	40	CNA4.0x50	10	STD12	81.4	85.7	88.4	88.6	88.6	88.6	20.0		
BTALU1200/440	44	CNA4.0x50	11	STD12	91.0	95.8	97.5	97.5	97.5	97.5	22.0		
BTALU1200/480	48	CNA4.0x50	12	STD12	100.0	106.0	106.0	106.0	106.0	106.0	24.0		
BTALU1200/520	52	CNA4.0x50	12	STD12	106.0	111.0	115.0	115.0	115.0	115.0	26.0		
BTALU1200/560	56	CNA4.0x50	12	STD12	110.0	116.0	120.0	124.0	124.0	124.0	27.0		
BTALU1200/600	60	CNA4.0x50	12	STD12	114.0	120.0	125.0	131.0	133.0	133.0	29.0		

Concealed Connectors

Concealed beam hanger BTC

Strong-Tie

The BTC concealed beam hanger is a discreet connector used for fixing to a rigid substrate. The number of dowels and anchors can be chosen freely according to the load applied. The BTC hanger withstands forces in the three directions. Consequently, out-of-plane purlin assemblies can easily be performed in complete safety.

Advantages:

- Concealed assembly
- Connection to concrete
- Can be used for narrow supported beams
- Can be used for sloping configurations

Areas of application:

- Joists
- Purlins
- Supporting beams
- Sloping configuration up to an angle of 45°

**** *** 0

c E

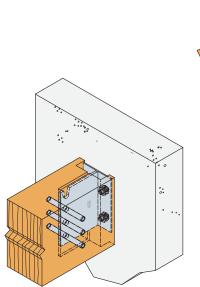
ġ

. 0

· ··.

i


0

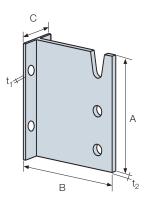

0

0

Dimensions

	Beam dimensions [mm]		Dim	ensions [n	nm]		Holes on supporting beam	Holes on supported beam
Model No.	Height	А	В	С	t1	t2	Ø14	Ø13
	Min.	~	5	0			911	<u><u></u></u>
BTC120-B	160	120	128	96	3	6	2	3
BTC160-B	200	160	128	96	3	6	4	4
BTC200-B	240	200	128	96	3	6	4	5
BTC240-B	280	240	128	96	3	6	4	6
BTC280-B	320	280	128	96	3	6	6	7
BTC320-B	360	320	128	96	3	6	6	8
BTC360-B	400	360	128	96	3	6	6	9
BTC400-B	440	400	128	96	3	6	8	10
BTC440-B	480	440	128	96	3	6	8	11
BTC480-B	520	480	128	96	3	6	8	12
BTC520-B	560	520	128	96	3	6	8	13
BTC560-B	600	560	128	96	3	6	8	14
BTC600-B	640	600	128	96	3	6	8	15

Concealed beam hanger **BTC**


For combined loads:

 $\sum \; \left(\; \frac{F_{i,d}}{R_{i,d}} \; \right)^2 \leq 1$

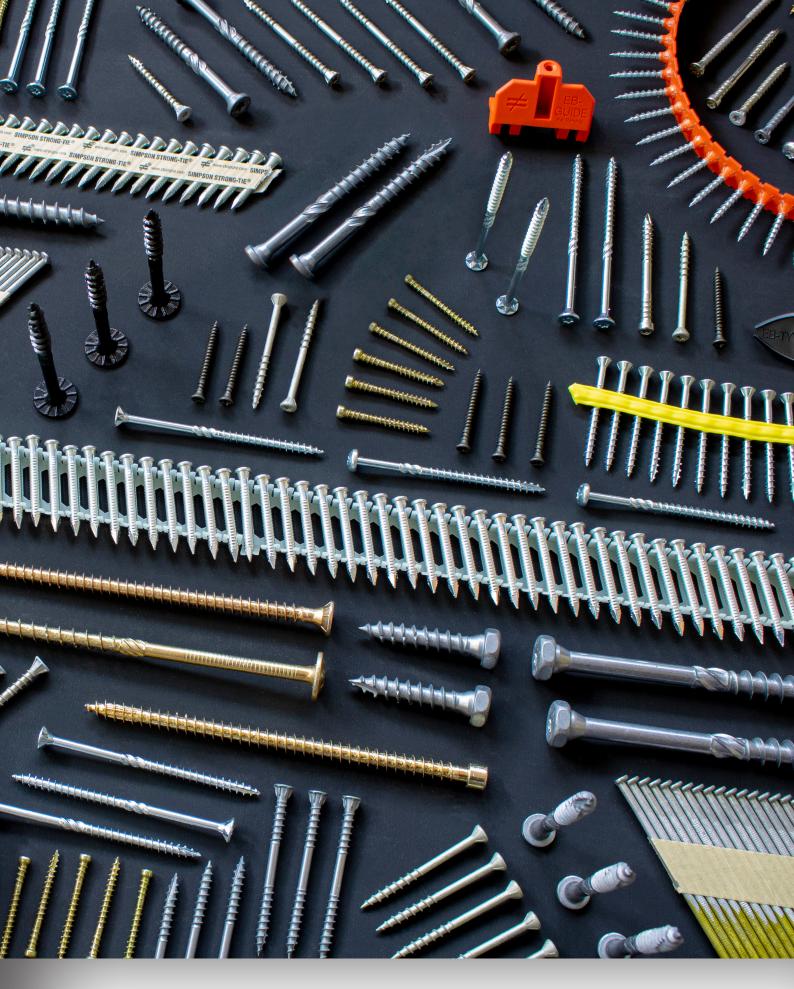
Value $R_{2,k}$ is calculated as $R_{2,k} = R_{1,k} x$ (number of dowels - 1) / (number of dowels).

The upper dowel is not considered for the uplift capacities, since it is placed in an open hole.

The strength and number of anchors must be checked according to the ETA and the type of substrate. The number of anchors specified in the table above is the maximum. If the strength of the anchors is going to play a decisive role, it must be taken into account for the connection.

SIMPSO

Strong-Tie


Characteristic values - Timber joist on rigid substrate - $\mathsf{R}_{_{\!\!3,k}}$ and $\mathsf{R}_{_{\!\!4,k}}$

		Faste	eners					C	haracteri	stic Value	es - C24 T	imber [kN	I]			
Model No.	Flange C Flar		ige A	R _{1,k} Dowel Lenghth [mm]						R _{2,k} Dowel Lenghth [mm]						
	Qty	Type Qty Type			80	100	120	140	160	180	80	100	120	140	160	180
BTC120-B	2	Ø12	3	STD12	11.5	12.7	14.2	15.8	17.2	17.2	7.7	8.5	9.5	10.5	11.5	11.5
BTC160-B	4	Ø12	4	STD12	18.5	20.4	22.8	25.3	27.8	27.8	13.9	15.3	17.1	19.0	20.9	20.9
BTC200-B	4	Ø12	5	STD12	26.7	29.4	32.7	36.4	40.3	40.3	21.4	23.5	26.2	29.1	32.2	32.2
BTC240-B	4	Ø12	6	STD12	35.8	39.4	43.8	48.6	53.8	54.3	29.8	32.8	36.5	40.5	44.8	45.3
BTC280-B	6	Ø12	7	STD12	45.6	50.1	55.6	61.7	68.3	69.4	39.1	42.9	47.7	52.9	58.5	59.5
BTC320-B	6	Ø12	8	STD12	56.0	61.4	68.1	75.5	83.4	85.5	49.0	53.7	59.6	66.1	73.0	74.8
BTC360-B	6	Ø12	9	STD12	66.8	73.1	80.9	89.6	99.0	102.2	59.4	65.0	71.9	79.6	88.0	90.8
BTC400-B	8	Ø12	10	STD12	77.9	85.1	94.0	104.1	114.8	119.5	70.1	76.6	84.6	93.7	103.3	107.6
BTC440-B	8	Ø12	11	STD12	89.1	97.2	107.3	118.7	130.9	133.3	81.0	88.4	97.5	107.9	119.0	121.2
BTC480-B	8	Ø12	12	STD12	100.5	109.5	120.7	133.4	147.0	147.0	92.1	100.4	110.6	122.1	134.8	134.8
BTC520-B	8	Ø12	13	STD12	100.5	109.5	120.7	133.4	147.0	147.0	100.5	109.5	120.7	133.4	147.0	147.0
BTC560-B	8	Ø12	14	STD12	100.5	109.5	120.7	133.4	147.0	147.0	100.5	109.5	120.7	133.4	147.0	147.0
BTC600-B	8	Ø12	15	STD12	100.5	109.5	120.7	133.4	147.0	147.0	100.5	109.5	120.7	133.4	147.0	147.0

		Faste	eners		Characteristic Values - C24 Timber [kN]									
Model No.	Flange C		Flange A		R _{3,k} Dowel Lenghth [mm]									
	Qty	Туре	Qty	Туре	60	80	100	120	140	160	180			
BTC120-B	2	Ø12	3	STD12	2.6	2.9	3.5	4.0	4.5	5.2	5.3	6.1		
BTC160-B	4	Ø12	4	STD12	3.2	3.9	4.4	5.0	5.9	6.5	7.0	12.2		
BTC200-B	4	Ø12	5	STD12	4.0	4.9	5.5	6.3	7.2	7.8	8.8	12.2		
BTC240-B	4	Ø12	6	STD12	4.8	5.7	6.6	7.5	8.4	9.1	10.4	12.2		
BTC280-B	6	Ø12	7	STD12	5.6	6.5	7.6	8.7	9.6	10.4	11.9	18.3		
BTC320-B	6	Ø12	8	STD12	6.4	7.3	8.6	9.7	10.8	11.8	13.4	18.3		
BTC360-B	6	Ø12	9	STD12	7.2	8.1	9.5	10.8	12.0	13.2	14.9	18.3		
BTC400-B	8	Ø12	10	STD12	8.0	8.9	10.5	11.9	13.2	14.7	16.4	24.4		
BTC440-B	8	Ø12	11	STD12	8.8	9.7	11.4	13.0	14.4	16.1	17.8	24.4		
BTC480-B	8	Ø12	12	STD12	9.6	10.6	12.4	14.1	15.6	17.6	19.3	24.4		
BTC520-B	8	Ø12	13	STD12	10.4	11.4	13.3	15.1	16.8	19.1	20.8	24.4		
BTC560-B	8	Ø12	14	STD12	11.2	12.3	14.3	16.2	18.0	20.5	22.3	24.4		
BTC600-B	8	Ø12	15	STD12	12.0	13.2	15.2	17.3	19.2	22.0	23.8	24.4		
The published	characte	ristic capa	acity is ba	ased on ir	stantane	ous load	duration	and servi	ce class 2	2 accordi	ng to			

EC5 (EN 1995) – k_{mod} = 1,1. For other load duration and service class, please refer to the ETA.

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

Check out our full range of **Premium Fasteners**

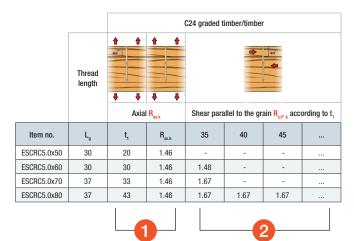
Download from our website now: www.strongtie.co.uk

SIMPSON Strong-Tie

Screws and Nails for CLT

Structural timber screws for CLT:
ESCR Washer head
structural timber screw76
ESCRC Countersunk head
structural timber screw80
ESCRFTC Fully threaded countersunk head
structural timber screw81
ESCRFTZ / ESCRFT Fully threaded cylinder
head structural timber screw82
TTUFS Countersunk head timber screw86
ESCRT2R Twin thread cylinder head
structural timber screw88
SWD Structural double threaded screw89
WSNTL Collated timber panel screws90

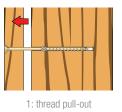
Connector screws and nails for CLT:

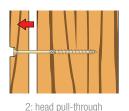

SSH Steel-to-timber connector screw	.91
ZYKLOP [®] Angled washer and screw	.94
CSA Connector screw	.96
CNA Connector nail	.97

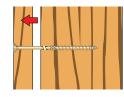
@strongtieUK
♥ f ☑ in ▶

www.strongtie.co.uk

Understanding screw resistance


Instructions for using the Simpson Strong-Tie[®] tables




	C24 gra	aded timber	/timber		Steel/0	C24 graded	timber	
		Shear perpendicular to the grain $R_{v,90^{\circ},k}$ according to t_1		R _{ax.st.k}	R _{v.0.st.k}	R _{v.90.st.k}	R _{v.0.st.k}	R _{v.90.st.k}
Item no.	35	40			Shear thin plate ⁽²⁾			ear plate ⁽³⁾
ESCRC5.0x50	-	-		2.04	1.81	1.81	2.35	2.35
ESCRC5.0x60	1.48	-		2.04	1.81	1.81	2.35	2.35
ESCRC5.0x70	1.67	-		2.52	1.93	1.93	2.47	2.47
ESCRC5.0x80	1.67	1.67	1.67	2.52	1.93	1.93	2.47	2.47

Strong-Tie

1 The timber/timber tensile strength R_{axk} includes the following resistances:

3: steel under tensile load

These resistances are valid for:

- A timber thickness beneath the head less than or equal to the value t1 displayed in the adjacent column.
- Screw in the lateral faces of the CLT with an angle from 45 to 90° between the screw axis and the grain of the timber.
- Screw in the strips of the CLT with an angle from 0 to 45° between the screw axis and the grain of the timber. A reduction factor dependent on the angle applies to the axial strength (refer to ETA 13/0796).

All tensile strengths are given for C24 graded timber. If using a material of a different density and if failure mode 3 is not design critical (which is the case for all timber-to-timber assemblies), the tensile strength can be multiplied by the following factor:

$$K_{dens} = (\rho/350)^{0.8}$$

Where.

Screws and Nails for CLT

350 kg/m³: characteristic density of the C24 graded timber according to EN 338

 ρ_{μ} : characteristic density of the timber used according to EN 338

For fastening screws (part threaded), dimension t, corresponds to the maximum thickness for which the thread is fully inserted pointside in the timber, which ensures effective tightening during installation.

The timber/timber shear strength R_{vak} includes the following resistances:

	ÿ		

1: compression timber 2

2: compression timber 1

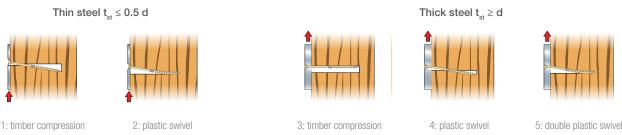
3: double compression

4: plastic swivel - timber 1 5: plastic swivel - timber 2

6: double plastic swivel

Shear strengths are provided for several timber thicknesses beneath the screw head t, and for the following configurations:

- Screw in the lateral faces of the CLT with an angle from 45 to 90° between the screw axis and the grain of the timber. Local bearing strength fh.k is calculated according to EN 1995-1-1:2004+A2:2014.
- Screw in the strips of the CLT with an angle from 0 to 45° between the screw axis and the grain of the timber. Local bearing strength fh.k is calculated according to the report entitled "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" by Univ.-Prof. Dr.-Ing Han Joachim Blass & Dipl.-Ing. Thomas Uibel.


All tensile strengths are given for C24 graded timber. The minimum distances and spacings are calculated according to the above report. Note that the calculated strengths and minimum spacings according to the above report apply with or without pilot holes.

In case of part threaded screws, the strengths only apply to configurations where the thread does not exceed more than 5 mm into the timber element beneath the screw head to ensure the best possible fastening.

Clause (2) of Part 8.3.1.2 in EN 1995-1-1:204+A2:2014 on the pointside penetration depth does not apply to this calculation.

Understanding screw resistance

One steel/timber shear strength R_{vak} includes the following resistances:

Shear strengths are provided for thick steel ($t_{st} = d$) and thin steel ($t_{st} = 0.5xd$). For the following configurations:

The strength values for intermediate steel thicknesses can be obtained by interpolating the values for thick and thin steel plates.

Local bearing strength fh.k and the minimum distances/spacings are calculated in the same way as the timber/timber shear strength values seen earlier, according to EN1995-1-1:2004+A2:2014 and the report entitled "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" by Univ.-Prof. Dr.-Ing Han Joachim Blass & Dipl.-Ing. Thomas Uibel.

Note that the calculated strengths and minimum spacings according to the above report apply with or without pilot holes.

These resistances are valid for C24 graded timber and higher.

All design calculations conform to EN 1995-1-1:2004+A2:2014 & the associated ETAs and DoPs for the screws.

Characteristic values / Design values

The values provided in these tables are the characteristic strengths R, according to Eurocode 5 (EN 1995-1-1:2005 + A1:2008 + A2:2014). The corresponding design strength R_{di} can be obtained with the following formula:

$$R_d = \frac{R_k \times k_{mod}}{\gamma_M}$$

Where:

kmod.: modification factor associated with the load duration, service class and material used (refer to Table 3.1 in Eurocode 5)

γ...: partial factor for material properties

This design value should be compared with the corresponding weighted stress.

However, standard practice is to compare a characteristic weighted stress (the worst case scenario is the easiest to identify) directly against the characteristic strength. The following can then be verified:

$$max\left(\frac{F_{d,i} \times \gamma_M}{k_{mod.i}}\right) \le R_k$$

Combined or oblique stresses

If a screw or group of screws is subjected to axial and lateral forces at the same time (case of oblique stresses), the following combination must be verified:

$$\left(\frac{F_{ax.d.i}}{R_{ax.d.i}}\right)^2 + \left(\frac{F_{v.d.i}}{R_{v.d.i}}\right)^2 \le 1$$

 $\mathsf{F}_{_{ax,d,i}}$ and $\mathsf{F}_{_{v,d,i}}$ correspond to the projected oblique stresses respectively according to the screw axis and perpendicular to the screw axis.

Effective number

The strength $R_{k,n}$ of a group of screws can be calculated by multiplying the strength of a single screw by n_{eff}:

$$R_{kn} = n_{aff} x R_k$$

Axially loaded screw:

 $n_{\rm eff} = n^{0.9}$

n	2 3		4	5	6
n _{eff}	1.87	2.69	3.48	4.26	5.02

Screws subject to shear loading:

TTUFS, ESCR/C/HRD d=5 and 6 On the same wood grain: $n_{eff} = n^{keff}$ Staggered arrangement of 1xd: $n_{eff} = n$ Perpendicular to the grain: $n_{eff} = n$

Spacing	k _{eff}
$a_1 \ge 14d$	1.0
a ₁ = 10d	0.85
a ₁ = 7d	0.7
a ₁ = 4d	0.5

Screws subject to shear loading: ESCR/C/HRD/FTC/FTZ/FT $d \ge 8$

On the same wood grain:

 $n_{eff} = min \begin{cases} n^{0.9} \times \sqrt[4]{\frac{a_1}{13d}} \end{cases}$ $n_{eff} = n$

Perpendicular to the grain:

111111111111111111

Screws and Nails for CLT

SIMPSO

Strong-Tie

ESCR Structural Washer Head **WOOD** Screw

ESCR is a washer head structural screw designed for load-bearing wood structures. The ESCR screw has a milling thread to allow for smooth driving of the shank. The large washer head gives high head pull-through resistance while allowing the wood members to close up firmly.

Features:

- No pre-drilling required
- High withdrawal resistance
- Milling thread allows smooth driving
- Washer head

Application:

• Solid wood, glulam, wood derivatives for timber framing

SIMPSO

Strong-Tie

- OSB floors on I-beam and solid wood joists
- Battens for fixing external insulation

ESCR Yellow Zinc Plated

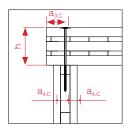
Model No		Dimensio	Bit	Æ		
Model No.	d	I	d _h	I _g	DIL	\square
ESCR6.0X60	6.0	60	14.0	36	T-30	100
ESCR6.0X80	6.0	80	14.0	48	T-30	100
ESCR6.0X100	6.0	100	14.0	48	T-30	100
ESCR6.0X120	6.0	120	14.0	64	T-30	100
ESCR6.0X140	6.0	140	14.0	64	T-30	100
ESCR6.0X160	6.0	160	14.0	64	T-30	100
ESCR6.0X180	6.0	180	14.0	64	T-30	100
ESCR6.0X200	6.0	200	14.0	64	T-30	100
ESCR8.0X80	8.0	80	20.0	54	T-40	50
ESCR8.0X100	8.0	100	20.0	54	T-40	50
ESCR8.0X120	8.0	120	20.0	54	T-40	50
ESCR8.0X140	8.0	140	20.0	84	T-40	50
ESCR8.0X160	8.0	160	20.0	84	T-40	50
ESCR8.0X180	8.0	180	20.0	100	T-40	50
ESCR8.0X200	8.0	200	20.0	100	T-40	50
ESCR8.0X220	8.0	220	20.0	100	T-40	50
ESCR8.0X240	8.0	240	20.0	100	T-40	50
ESCR8.0X260	8.0	260	20.0	100	T-40	50
ESCR8.0X280	8.0	280	20.0	100	T-40	50
ESCR8.0X300	8.0	300	20.0	100	T-40	50
ESCR8.0X320	8.0	320	20.0	100	T-40	50
ESCR8.0X340	8.0	340	20.0	100	T-40	50
ESCR8.0X360	8.0	360	20.0	100	T-40	50
ESCR8.0x380	8.0	380	20.0	100	T-40	50
ESCR8.0X400	8.0	400	20.0	100	T-40	50

				l g		
Model No.		Dimensio	D:4	1I		
wodel No.	d	I	d _h	lg	Bit	\heartsuit
ESCR10.0X100	10.0	100	25.0	60	T-50	25
ESCR10.0X120	10.0	120	25.0	60	T-50	25
ESCR10.0X140	10.0	140	25.0	60	T-50	25
ESCR10.0X160	10.0	160	25.0	100	T-50	25
ESCR10.0X180	10.0	180	25.0	100	T-50	25
ESCR10.0X200	10.0	200	25.0	100	T-50	25
ESCR10.0X220	10.0	220	25.0	100	T-50	25
ESCR10.0X240	10.0	240	25.0	100	T-50	25
ESCR10.0X260	10.0	260	25.0	100	T-50	25
ESCR10.0X280	10.0	280	25.0	100	T-50	25
ESCR10.0X300	10.0	300	25.0	100	T-50	25
ESCR10.0X320	10.0	320	25.0	100	T-50	25
ESCR10.0X340	10.0	340	25.0	100	T-50	25
ESCR10.0X360	10.0	360	25.0	100	T-50	25
ESCR10.0X380	10.0	380	25.0	100	T-50	25
ESCR10.0X400	10.0	400	25.0	100	T-50	25

NNN

‡d

76


Screws and Nails for CLT

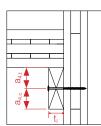
Design parameters

Model No.	Characteristic yield moment M _{y,k} [Nmm]	Characteristic withdrawal parameter f _{ax,k,90} , [N/mm ²]	Characteristic head pull-through parameter f _{head,k} [N/mm ²]	Characteristic tensile capacity $f_{\text{tens,k}}\left[\text{kN}\right]$
ESCR6	10,100	13.0	16.7	12.8
ESCR8	22,600	10.7	17.6	22.7
ESCR10	33,000	9.5	15.2	33.2

Panels joined at right angles with screws

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

Model No.	Characteristic shear strength R _{vk} according to panel thickness h [kN]:									
Model No.	120 [mm]	140 [mm]	160 [mm]	180 [mm]	200 [mm]	220 [mm]	240 [mm]	280 [mm]	300 [mm]	
ESCR6.0X180	1.3	-	-	-	-	-	-	-	-	
ESCR6.0X200	1.5	1.3	-	-	-	-	-	-	-	
ESCR8.0X220	2.8	-	-	-	-	-	-	-	-	
ESCR8.0X240	2.8	2.8	-	-	-	-	-	-	-	
ESCR8.0X260	2.8	2.8	2.8	-	-	-	-	-	-	
ESCR8.0X280	2.8	2.8	2.8	2.8	-	-	-	-	-	
ESCR8.0X300	2.8	2.8	2.8	2.8	2.8	-	-	-	-	
ESCR8.0X320	2.8	2.8	2.8	2.8	2.8	2.8	-	-	-	
ESCR8.0X340	2.8	2.8	2.8	2.8	2.8	2.8	2.8	-	-	
ESCR8.0X360	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	-	
ESCR8.0X380	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	
ESCR8.0X400	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	
ESCR10.0X220	3.6	-	-	-	-	-	-	-	-	
ESCR10.0X240	3.6	3.6	-	-	-	-	-	-	-	
ESCR10.0X260	3.6	3.6	3.6	-	-	-	-	-	-	
ESCR10.0X280	3.6	3.6	3.6	3.6	-	-	-	-	-	
ESCR10.0X300	3.6	3.6	3.6	3.6	3.6	-	-	-	-	
ESCR10.0X320	3.6	3.6	3.6	3.6	3.6	3.6	-	-	-	
ESCR10.0X340	3.6	3.6	3.6	3.6	3.6	3.6	3.6	-	-	
ESCR10.0X360	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	-	
ESCR10.0X380	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	
ESCR10.0X400	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	


Minimum distance for screws under shear forces⁽¹⁾

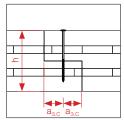
Model No.	a _i [mm]	a, [mm] a _{3.c} [mm]		
ESCR6	60	36	30	
ESCR8	80	48	40	
ESCR10	100	60	50	

(1) According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" and ETA 13/0796.

Strong-Tie

Fixing a wall plate to a panel with screws

	Timber wall plate/C24 timber stud									
Model No.	Characteristic shear strength R _{v:90-90.k} according to wall plate thickness t ₁ [kN]									
	35 [mm]	40 [mm]	45 [mm]	60 [mm]	75 [mm]	80 [mm]	90 [mm]	≥ 100 [mm]		
ESCR6.0X80	2.6	-	-	-	-	-	-	-		
ESCR6.0X100	2.6	2.6	2.6	-	-	-	-	-		
ESCR6.0X120	2.6	2.6	2.6	2.6	-	-	-	-		
ESCR6.0X140	2.6	2.6	2.6	2.6	2.6	2.6	-	-		
ESCR6.0X160	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6		
ESCR8.0X100	3.7	3.9	4.1	-	-	-	-	-		
ESCR8.0X120	3.7	3.9	4.1	4.4	-	-	-	-		
ESCR8.0X140	4.3	4.5	4.7	4.9	-	-	-	-		
ESCR8.0X160	4.3	4.5	4.7	5.0	5.0	4.9	-	-		
ESCR8.0X180	4.3	4.5	4.7	5.0	5.0	5.0	-	-		
ESCR8.0X200	4.3	4.5	4.7	5.0	5.0	5.0	5.0	5.0		
ESCR10.0X120	-	4.9	5.1	5.7	-	-	-	-		
ESCR10.0X140	-	4.9	5.1	5.7	5.7	5.7	-	-		
ESCR10.0X160	-	5.8	6.1	6.6	-	-	-	-		
ESCR10.0X180	-	5.8	6.1	6.6	6.6	6.6	-	-		
ESCR10.0X200	-	5.8	6.1	6.6	6.6	6.6	6.6	6.6		


Minimum distance for screws under shear forces⁽¹⁾

Model No.	a _{1.90*} [mm]	a _{2.90°} [mm]	a _{4.150°} [mm]	a _{4.c.90°} [mm]
ESCR6	24	24	42	18
ESCR8	32	32	32	24
ESCR10	40	40	40	30

⁽¹⁾ According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" and ETA 13/0796.

Screws and Nails for CLT **Strong-Tie**

Panel assembly with a halved joint and screws at 90°

Madal Na		Characteristic shear strength
Model No.	h _{min} [mm]	R _{vk} [kN]
ESCR6.0X100	110	2.6
ESCR6.0X120	130	2.6
ESCR6.0X140	150	2.6
ESCR6.0X160	170	2.6
ESCR6.0X180	190	2.6
ESCR6.0X200	210	2.6
ESCR8.0X100	110	3.9
ESCR8.0X120	130	4.1
ESCR8.0X140	168	4.7
ESCR8.0X160	170	4.7
ESCR8.0X180	200	4.7
ESCR8.0X200	210	4.7
ESCR8.0X220	230	4.7
ESCR8.0X240	250	4.7
ESCR8.0X260	270	4.7
ESCR8.0X280	290	4.7
ESCR8.0X300	310	4.7
ESCR8.0X320	330	4.7
ESCR10.0X100	120	4.9
ESCR10.0X120	130	5.3
ESCR10.0X140	150	5.3
ESCR10.0X160	200	6.3
ESCR10.0X180	200	6.3
ESCR10.0X200	210	6.3
ESCR10.0X220	230	6.3
ESCR10.0X240	250	6.3
ESCR10.0X260	270	6.3
ESCR10.0X280	290	6.3
ESCR10.0X300	310	6.3
ESCR10.0X320	330	6.3

Minimum distance for screws under shear forces⁽¹⁾

Model No.	a _, [mm]	a _{3.c} [mm]
ESCR6	24	36
ESCR8	32	48
ESCR10	40	60

⁽¹⁾ According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" and ETA 13/0796.

Strong-Tie

6

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

Bit

T-40

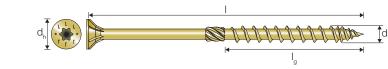
Structural timber screws for CLT

ESCRC Structural Countersunk WOOD Screw

ESCRC is a countersunk structural screw designed for load-bearing wood structures. The ESCRC screw has a milling thread to allow for

Features:

- No pre-drilling required
- High withdrawal resistance
- Milling thread allows smooth driving
- Countersunk head


Application: Solid wood, glulam, wood derivatives for timber framing

smooth driving of the shank. The countersunk head gives a flush

finish while allowing the wood members to close up firmly.

- OSB floors on I-beams and solid wood joists
- Battens for fixing external insulation

Madal Na		Dimensi	ons [mm]		Bit	A		Madal No		Dimensio	ons [mm]	
Model No.	d	I	d _h	l _g	DIL	6		Model No.	d	I	d _h	l _g
ESCRC5.0X50	5.0	50	10.0	30	T-25	250		ESCRC8.0X180	8.0	180	15.0	100
ESCRC5.0X60	5.0	60	10.0	30	T-25	250		ESCRC8.0X200	8.0	200	15.0	100
ESCRC5.0X70	5.0	70	10.0	37	T-25	200		ESCRC8.0X220	8.0	220	15.0	100
ESCRC5.0X80	5.0	80	10.0	37	T-25	200		ESCRC8.0X240	8.0	240	15.0	100
ESCRC5.0X90	5.0	90	10.0	55	T-25	200]	ESCRC8.0X260	8.0	260	15.0	100
ESCRC6.0X60	6.0	60	12.0	60	T-30	200		ESCRC8.0X280	8.0	280	15.0	100
ESCRC6.0X70	6.0	70	12.0	36	T-30	200]	ESCRC8.0X300	8.0	300	15.0	100
ESCRC6.0X80	6.0	80	12.0	48	T-30	100		ESCRC8.0X320	8.0	320	15.0	100
ESCRC6.0X90	6.0	90	12.0	48	T-30	100		ESCRC8.0X340	8.0	340	15.0	100
ESCRC6.0X100	6.0	100	12.0	48	T-30	100		ESCRC8.0X360	8.0	360	15.0	100
ESCRC6.0X120	6.0	120	12.0	64	T-30	100		ESCRC8.0X380	8.0	380	15.0	100
ESCRC6.0X130	6.0	130	12.0	64	T-30	100		ESCRC8.0X400	8.0	400	15.0	100
ESCRC6.0X140	6.0	140	12.0	64	T-30	100		ESCRC10.0X120	10.0	120	18.5	60
ESCRC6.0X150	6.0	150	12.0	64	T-30	100		ESCRC10.0X140	10.0	140	18.5	60
ESCRC6.0X160	6.0	160	12.0	64	T-30	100]	ESCRC10.0X160	10.0	160	18.5	100
ESCRC6.0X180	6.0	180	12.0	64	T-30	100		ESCRC10.0X180	10.0	180	18.5	100
ESCRC6.0X200	6.0	200	12.0	64	T-30	100]	ESCRC10.0X200	10.0	200	18.5	100
ESCRC6.0X220	6.0	220	12.0	64	T-30	100		ESCRC10.0X220	10.0	220	18.5	100
ESCRC6.0X240	6.0	240	12.0	64	T-30	100		ESCRC10.0X240	10.0	240	18.5	100
ESCRC6.0X260	6.0	260	12.0	64	T-30	100		ESCRC10.0X260	10.0	260	18.5	100
ESCRC6.0X280	6.0	280	12.0	64	T-30	100		ESCRC10.0X280	10.0	280	18.5	100
ESCRC6.0X300	6.0	300	12.0	64	T-30	100		ESCRC10.0X300	10.0	300	18.5	100
ESCRC8.0X80	8.0	80	15.0	54	T-40	50		ESCRC10.0X320	10.0	320	18.5	100
ESCRC8.0X100	8.0	100	15.0	54	T-40	50		ESCRC10.0X340	10.0	340	18.5	100
ESCRC8.0X120	8.0	120	15.0	54	T-40	50		ESCRC10.0X360	10.0	360	18.5	100
ESCRC8.0X140	8.0	140	15.0	84	T-40	50		ESCRC10.0X380	10.0	380	18.5	100
ESCRC8.0X160	8.0	160	15.0	84	T-40	50		ESCRC10.0X400	10.0	400	18.5	100

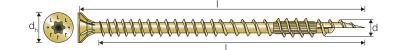
Screws and Nails for CLT

Design parameters

Model No.	Characteristic yield moment – M _{y,k} [Nmm]	Characteristic withdrawal parameter f _{ax,k,90°} [N/mm ²]	Characteristic head pull-through parameter f _{head,k} [N/mm ²]	$\begin{array}{c} \text{Characteristic tensile capacity} \\ \text{f}_{\text{tens,k}} \left[\text{kN}\right] \end{array}$
ESCRC8	22,600	10.7	12.4	22.7
ESCRC10	33,000	9.5	12.2	33.2

ESCRFTC Structural Fully Threaded Countersunk **WOOD** Screw

The ETA approved ESCRFTC is a fully threaded structural screw designed for load-bearing wood structures.


Features:

- No pre-drilling required
- High withdrawal resistance
- Fully threaded
- Countersunk head

Application:

- Bracket/timber and timber/timber connections
- Reinforcements
- Battens for fixing external insulation

ESCRFTC Yellow Zinc Plated

Model No.		Dimensio	ons [mm]		Bit	Æ
Model No.	d	I	d _h	l _g	DIL	\square
ESCRFTC8.0X120	8.0	120	15.0	110	T-40	50
ESCRFTC8.0X140	8.0	140	15.0	130	T-40	50
ESCRFTC8.0X160	8.0	160	15.0	150	T-40	50
ESCRFTC8.0X180	8.0	180	15.0	170	T-40	50
ESCRFTC8.0X200	8.0	200	15.0	190	T-40	50
ESCRFTC8.0X220	8.0	220	15.0	210	T-40	50
ESCRFTC8.0X240	8.0	240	15.0	230	T-40	50
ESCRFTC8.0X260	8.0	260	15.0	250	T-40	50
ESCRFTC8.0X280	8.0	280	15.0	270	T-40	50
ESCRFTC8.0X300	8.0	300	15.0	290	T-40	50
ESCRFTC8.0X350	8.0	350	15.0	340	T-40	50
ESCRFTC8.0X400	8.0	400	15.0	390	T-40	50
ESCRFTC8.0X450	8.0	450	15.0	427	T-40	50
ESCRFTC10.0X120	10.0	120	18.5	108	T-50	50
ESCRFTC10,0X160	10.0	160	18.5	148	T-50	50
ESCRFTC10.0X180	10.0	180	18.5	168	T-50	50
ESCRFTC10.0X200	10.0	200	18.5	188	T-50	50
ESCRFTC10.0X220	10.0	220	18.5	208	T-50	50
ESCRFTC10.0X240	10.0	240	18.5	228	T-50	50
ESCRFTC10.0X260	10.0	260	18.5	248	T-50	50
ESCRFTC10.0X280	10.0	280	18.5	268	T-50	50
ESCRFTC10.0X300	10.0	300	18.5	288	T-50	50
ESCRFTC10.0X350	10.0	350	18.5	338	T-50	50
ESCRFTC10.0X400	10.0	400	18.5	388	T-50	50
ESCRFTC10.0X450	10.0	450	18.5	426	T-50	50

Madal Na		Dimensio	ons [mm]		D:4	Ē
Model No.	d	I	d _h	l _g	Bit	\heartsuit
ESCRFTC12.0X200	12.0	200	20.0	180	T-50	25
ESCRFTC12.0X220	12.0	220	20.0	200	T-50	25
ESCRFTC12.0X240	12.0	240	20.0	220	T-50	25
ESCRFTC12.0X260	12.0	260	20.0	240	T-50	25
ESCRFTC12.0X280	12.0	280	20.0	260	T-50	25
ESCRFTC12.0X300	12.0	300	20.0	280	T-50	25
ESCRFTC12.0X350	12.0	350	20.0	330	T-50	25
ESCRFTC12.0X400	12.0	400	20.0	380	T-50	25
ESCRFTC12.0X450	12.0	450	20.0	430	T-50	25
ESCRFTC12.0X500	12.0	500	20.0	480	T-50	25
ESCRFTC12.0X600	12.0	600	20.0	580	T-50	25

Design parameters

Model No.	Characteristic yield moment M _{yk} [Nmm]	$\begin{array}{l} Characteristic withdrawal parameter \\ f_{ack,90^{*}}\left[N/mm^{2}\right] \end{array}$	Characteristic head pull-through parameter f _{head,k} [N/mm ²]	Characteristic tensile capacity $f_{tens,k} [kN]$
ESCRFTC8	20,300	13.1	12.4	24.1
ESCRFTC10	36,700	12.5	12.2	40.0
ESCRFTC12	48,500	11.2	10.3	46.7

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

Strong-Tie

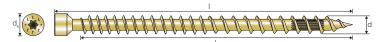
ESCRFTZ / ESCRFT Structural Fully Threaded Cylinder Head WOOD Screw

The ETA approved ESCRFTZ and ESCRFT are fully threaded cylinder head structural screws designed for load-bearing wood structures.

Features:

- No pre-drilling required
- High withdrawal resistance
- Fully threaded
- Cylinder head

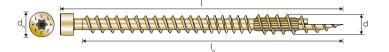
Application:


• Timber-to-timber connections, reinforcements, glulam, CLT, woodbased panels

SIMPSO

Strong-Tie

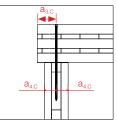
• Ideal for applications where pairs of screws are driven in at angles



ESCRFTZ Yellow Zinc Plated

Madal Na		Dimensio	ons [mm]		Bit	Æ
Model No.	d	I	d _h	l _g	DIL	6
ESCRFTZ8.0X120	8.0	120	10.2	110	T-40	50
ESCRFTZ8.0X140	8.0	140	10.2	130	T-40	50
ESCRFTZ8.0X160	8.0	160	10.2	150	T-40	50
ESCRFTZ8.0X180	8.0	180	10.2	170	T-40	50
ESCRFTZ8.0X200	8.0	200	10.2	190	T-40	50
ESCRFTZ8.0X220	8.0	220	10.2	210	T-40	50
ESCRFTZ8.0X240	8.0	240	10.2	230	T-40	50
ESCRFTZ8.0X260	8.0	260	10.2	250	T-40	50
ESCRFTZ8.0X280	8.0	280	10.2	270	T-40	50
ESCRFTZ8.0X300	8.0	300	10.2	290	T-40	50
ESCRFTZ8.0X350	8.0	350	10.2	340	T-40	50
ESCRFTZ8.0X400	8.0	400	10.2	390	T-40	50

ESCRFT Yellow Zinc Plated

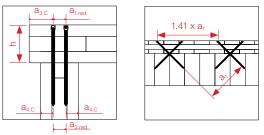

Madal Na		Dimensio	ons [mm]		Dit	6	
Model No.	d	I	d _h	l _g	Bit		
ESCRFT10.0X450	10.0	450	13.4	426	T-50	25	
ESCRFT10.0X500	10.0	500	13.4	476	T-50	25	
ESCRFT10.0X600	10.0	600	13.4	576	T-50	25	
ESCRFT10.0X800	10.0	800	13.4	776	T-50	15	
ESCRFT10.0X1000	10.0	1000	13.4	976	T-50	15	

Design parameters

Model No.	Characteristic yield moment M _{yk} [Nmm]	Characteristic withdrawal parameter f _{ax,k30} , [N/mm ²]	Characteristic head pull-through parameter f _{head,k} [N/mm ²]	Characteristic tensile capacity f _{tens,k} [kN]
ESCRFTZ8	20,300	13.1	-	24.1
ESCRFT10	36,700	12.5	-	40.0

Screws and Nails for CLT

Panels joined at right angles with screws



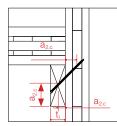
Mandal Na	Characteristic shear strength R _{vk} according to panel thickness R [kN]:									
Model No.	120 [mm]	140 [mm]	160 [mm]	180 [mm]	200 [mm]	220 [mm]	240 [mm]	280 [mm]	300 [mm]	
ESCRFTZ8.0X160	1.8	-	-	-	-	-	-	-	-	
ESCRFTZ8.0X180	2.3	1.8	-	-	-	-	-	-	-	
ESCRFTZ8.0X200	2.8	2.3	1.8	-	-	-	-	-	-	
ESCRFTZ8.0X220	3.0	2.8	2.3	1.8	-	-	-	-	-	
ESCRFTZ8.0X240	3.1	3.0	2.8	2.3	1.8	-	-	-	-	
ESCRFTZ8.0X400	3.1	3.2	3.4	3.6	3.8	3.7	3.5	3.3	3.1	
ESCRFT10.0x450	4.0	4.2	4.4	4.6	4.8	5.0	5.2	5.0	4.8	
ESCRFT10.0x500	4.0	4.2	4.4	4.6	4.8	5.0	5.3	5.5	5.3	
ESCRFT10.0x600	4.0	4.2	4.4	4.6	4.8	5.0	5.3	5.5	5.7	
ESCRFT10.0x800	4.0	4.2	4.4	4.6	4.8	5.0	5.3	5.5	5.7	
ESCRFT10.0x1000	4.0	4.2	4.4	4.6	4.8	5.1	5.3	5.5	5.7	

Minimum distance for screws under shear forces(1)

Model No.	a, [mm]	a _{3.c} [mm]	a _{4.c} [mm]	
ESCRFTZ8	80	48	40	
ESCRFTZ10	100	60	50	

Panels joined at right angles by skew screwing

	Minimum CIT thiskness [mm]	Characteristic Strength (Pull-out / Buckling) [kN]		
	Minimum CLT thickness [mm]	1 pair		
Model No.	h _{min}	R _{wk.pair}		
ESCRFTZ8.0x180	74	11.9		
ESCRFTZ8.0x200	81	13.3		
ESCRFTZ8.0x220	88	14.8		
ESCRFTZ8.0x240	95	16.3		
ESCRFTZ8.0x260	102	17.8		
ESCRFTZ8.0x280	109	19.3		
ESCRFTZ8.0x300	117	20.8		

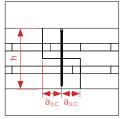

The published characteristic capacity is based on a instantaneous load duration and service class 1 or 2 according to EC5 (EN 1995) - k_{md} = 1,1. For other load duration and service class, please contact the Techncial Deprtament

Minimum distance for screws under tensile forces

Model No.	a ₁ [mm]	a _{1.red} [mm]	a _{2.red} [mm]	a _{3.c} [mm]	a _{4.c} [mm]
ESCRFTZ8	40	32	20	48	40
ESCRFT10	50	40	25	60	50

(1) According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" and ETA 13/0796.

Fixing a wall plate to a panel with screws at 45°



Model No.	Minimum wall plate thickness	Characteristic capacity
	t, [mm]	R _{v45.k} [kN]
ESCRFTZ8.0X180	64	5.9
ESCRFTZ8.0X200	71	6.7
ESCRFTZ8.0X220	78	7.4
ESCRFTZ8.0X240	85	8.2

Minimum distance for angled screwing

Model No.	a, [mm]	ť, [mm]	a _{2.c} [mm]
ESCRFTZ8	50	64	32

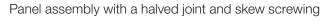
Panel assembly with a halved joint and screws at 90°

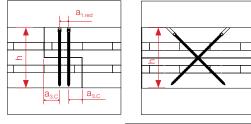
	Minimum panel thickness	Characteristic shear strength
Model No.	h _{min} [mm]	R _{v.k} [kN]
ESCRFTZ8.0X120	130	4.1
ESCRFTZ8.0X140	150	4.4
ESCRFTZ8.0X160	170	4.6
ESCRFTZ8.0X180	190	4.9
ESCRFTZ8.0X200	210	5.1
ESCRFTZ8.0X220	230	5.4
ESCRFTZ8.0X240	250	5.6

Minimum distance for screws under shear forces⁽¹⁾

Model No.	a, [mm]	a _{3.0} [mm]
ESCRFTZ8	32	48

⁽¹⁾ According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" and ETA 13/0796.


SIMPSON

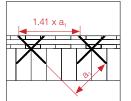

Strong-Tie

Screws and Nails for CLT

SIMPSO

Strong-Tie

	Minimum CLT thickness	Characteristic Strength (Pull-out / Buckling) [kN]
		1 pair
Model No.	h _{min} [mm]	R _{w.k.pair}
ESCRFTZ8.0x180	74	11.9
ESCRFTZ8.0x200	81	13.3
ESCRFTZ8.0x220	88	14.8
ESCRFTZ8.0x240	95	16.3
ESCRFTZ8.0x260	102	17.8
ESCRFTZ8.0x280	109	19.3
ESCRFTZ8.0x300	117	20.8


The published characteristic capacity is based on a instantaneous load duration and service class 1 or 2 according to EC5 (EN 1995) $-k_{mod} = 1, 1$. For other load duration and service class, please contact the Techncial Deprtament

Minimum distance for screws under shear forces⁽¹⁾

Model No.	a, [mm]	a _{1.red} [mm]	a _{3.c} [mm]	
ESCRFTZ8	40	32	48	

¹⁰ According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" and ETA 13/0796.

Panel assembly with skew screwing

Model No.	Minimum panel thickness	Characteristic shear strength
model No.	h _{min} [mm]	R _{vk} per screw [kN]
ESCRFTZ8.0X180	132	4.9
ESCRFTZ8.0X200	146	5.1
ESCRFTZ8.0X220	161	5.4
ESCRFTZ8.0X240	175	5.6
ESCRFTZ8.0X260	189	5.6
ESCRFTZ8.0X280	203	5.6
ESCRFTZ8.0X300	217	5.6
ESCRFTZ8.0X350	252	5.6
ESCRFTZ8.0X400	288	5.6

Minimum distance for screws under shear forces (1)

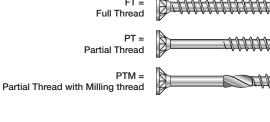
Model No.	a ₁ [mm]	a _{1 red} [mm]	a _{3.c} [mm]
ESCRFTZ8		40	

⁽¹⁾ According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz" and ETA 13/0796.

TTUFS Countersunk WOOD Screw

Suitable for interior use, the TTUFS screw has a serrated thread to reduce the resistance when driving. It has a type 17 point which prevents wood splitting. 80 mm or longer variants have an additional milling thread to further reduce the resistance.

Features:


- 6 lobe drive
- Prismatic countersunk head design ensures a flush finish
- Type 17 point
- Serrated thread

Application:

• Wood to wood

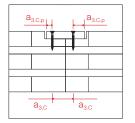
FT =

TTUFS Electro Galvanised

		Dimension		ons [mm]				P
Model No.	Item code	d	I	d _h	l _g	Thread	Bit	B
TTUFS4.5x25	74434	4.5	25	8.4	20	FT	T-20	200
TTUFS4.5x30	74435	4.5	30	8.4	25	FT	T-20	200
TTUFS4.5x35	74436	4.5	35	8.4	30	FT	T-20	200
TTUFS4.5x40	74437	4.5	40	8.4	35	FT	T-20	200
TTUFS4.5x45	74438	4.5	45	8.4	29	PT	T-20	200
TTUFS4.5x50	74439	4.5	50	8.4	30	PT	T-20	200
TTUFS4.5x60	74440	4.5	60	8.4	35	PT	T-20	200
TTUFS4.5x70	74441	4.5	70	8.4	40	PT	T-20	100
TTUFS4.5x80	74442	4.5	80	8.4	50	PTM	T-20	100
TTUFS5.0x30	74373	5.0	30	9.5	25	FT	T-25	200
TTUFS5.0x40	74374	5.0	40	9.5	35	FT	T-25	200
TTUFS5.0x50	74375	5.0	50	9.5	30	PT	T-25	200
TTUFS5.0x60	74376	5.0	60	9.5	35	PT	T-25	200
TTUFS5.0x70	74377	5.0	70	9.5	40	PT	T-25	100
TTUFS5.0x80	74378	5.0	80	9.5	40	PTM	T-25	100
TTUFS5.0x90	74379	5.0	90	9.5	45	PTM	T-25	100
TTUFS5.0x100	74443	5.0	100	9.5	60	PTM	T-25	100
TTUFS5.0x120	74372	5.0	120	9.5	60	PTM	T-25	100
TTUFS6.0x40	74455	6.0	40	11.6	34	FT	T-30	200
TTUFS6.0x50	74457	6.0	50	11.6	30	PT	T-30	200
TTUFS6.0x60	74458	6.0	60	11.6	35	PT	T-30	200
TTUFS6.0x70	74459	6.0	70	11.6	40	PT	T-30	100
TTUFS6.0x80	74460	6.0	80	11.6	40	PTM	T-30	100
TTUFS6.0x90	74461	6.0	90	11.6	45	PTM	T-30	100
TTUFS6.0x100	74380	6.0	100	11.6	60	PTM	T-30	100
TTUFS6.0x120	74451	6.0	120	11.6	70	PTM	T-30	100
TTUFS6.0x140	74452	6.0	140	11.6	70	PTM	T-30	100
TTUFS6.0x160	74453	6.0	160	11.6	70	PTM	T-30	100
TTUFS6.0x180	74454	6.0	180	11.6	70	PTM	T-30	100

đ

Screws and Nails for CLT


SIMPSON

Strong-Tie

Design parameters

Model No.	Characteristic yield moment M _{y,k} [Nmm]	Characteristic withdrawal parameter f _{axk,90°} [N/mm ²]	Characteristic head pull-through parameter f _{head,k} [N/mm ²]	Characteristic tensile capacity f _{tens,k} [KN]	
TTUFS4.5	5,452	19.2	16.8	7.6	
TTUFS5	7,602	13.2	18.2	9.3	
TTUFS6	12,281	17.2	20.3	12.4	

Panel assembly with a tongue

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

	Panel (OSB, woo timber acco	od fibre $\rho_k \ge$ 380 kg/ ording to the tongue	m³) / C24 graded thickness t _p :	Plywood ($\rho_k \ge 490 \text{ kg/m}^3$) / C24 graded timber according to the tongue thickness t_p :					
Model No.	18 [mm]	22 [mm]	25 [mm]	18 [mm]	22 [mm]	25 [mm]	30 [mm]		
	R _{v.90.k.18}	R _{v.90.k.22}	R _{v.90.k.25}	R _{v.90.k.18}	R _{v.90.k.22}	R _{v.90.k.25}	R _{v.90.k.30}		
TTUFS4.5X45	0.9	1.0	0.9	0.9	0.9	0.9	-		
TTUFS4.5X50	1.3	1.1	1.0	1.0	1.0	1.0	0.9		
TTUFS4.5X60	1.3	1.4	1.5	1.4	1.5	1.2	1.1		
TTUFS4.5X70	1.3	1.4	1.5	1.4	1.5	1.6	1.6		
TTUFS4.5X80	1.3	1.4	1.5	1.4	1.5	1.6	1.6		
TTUFS5.0X50	1.6	1.2	1.2	1.1	1.2	1.2	1.1		
TTUFS5.0X60	1.6	1.7	1.8	1.7	1.8	1.4	1.3		
TTUFS5.0X70	1.6	1.7	1.8	1.7	1.8	1.9	1.5		
TTUFS5.0X80	1.6	1.7	1.8	1.7	1.8	1.9	2.0		
TTUFS5.0X90	1.6	1.7	1.8	1.7	1.8	1.9	2.0		
TTUFS6.0X50	1.3	1.3	1.3	1.4	1.3	1.4	-		
TTUFS6.0X60	2.1	2.2	1.6	2.4	1.6	1.6	1.6		
TTUFS6.0X70	2.1	2.2	2.3	2.4	2.5	2.6	1.9		
TTUFS6.0X80	2.1	2.2	2.3	2.4	2.5	2.6	2.8		
TTUFS6.0X90	2.1	2.2	2.3	2.4	2.5	2.6	2.8		

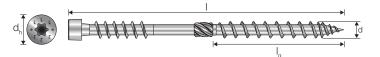
Minimum shear distances (1)

Model No.		Angle between the force and the fibre = 0°								
	a ₁ [mm]	a ₂ [mm]	a _{3.c} [mm]	a _{3.c.p} [mm]						
TTUFS4,5	18	18	28	14						
TTUFS5	20	20	30	15						
TTUFS6	24	24	36	18						

(1) According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bernessungsvorschläge für Verbindungsmittel in Brettsperrholz".

ESCRT2R Structural Roof Insulation **WOOD** Screw

The ETA approved ESCRT2R screw is the ideal fixing option for roof insulation. The screw can absorb shear and compressive forces and by doing so, the insulation material is pressed significantly less to the background, thereby improving the insulation performance.


Features:

- 6 lobe drive
- Milling thread
- Coarse thread

Application:

• Fixing of top roof insulation to wood

ESCRT2R Electro Galvanised

Model No.		Dimensio		Bit	Ţ.	
wouer no.	d	I	d _n	l _g	DIL	\square
ESCRT2R8.0X240	8.0	240	10.2	84	T-40	50
ESCRT2R8.0X260	8.0	260	10.2	100	T-40	50
ESCRT2R8.0X280	8.0	280	10.2	100	T-40	50
ESCRT2R8.0X300	8.0	300	10.2	100	T-40	50
ESCRT2R8.0X320	8.0	320	10.2	100	T-40	50
ESCRT2R8.0X340	8.0	340	10.2	100	T-40	50
ESCRT2R8.0X360	8.0	360	10.2	100	T-40	50
ESCRT2R8.0X400	8.0	400	10.2	100	T-40	50
ESCRT2R8.0X450	8.0	450	10.2	100	T-40	50

Design parameters

Model No.	Characteristic	Characteristic	Characteristic head	Characteristic
	yield moment	withdrawal parameter	pull-through parameter	tensile capacity
	M _{y,k} [Nmm]	f _{ax,k,90°} [N/mm ²]	f _{head,k} [N/mm²]	f _{tens,k} [kN]
ESCRT2R8	22,600	10.7	12.4	22.7

Insulation thickness

Model No.	Maximum insulation thickness [mm]
ESCRT2R8.0X240	125
ESCRT2R8.0X260	143
ESCRT2R8.0X280	160
ESCRT2R8.0X300	177
ESCRT2R8.0X320	195
ESCRT2R8.0X340	212
ESCRT2R8.0X360	229
ESCRT2R8.0X400	264
ESCRT2R8.0X450	307

Maximum insulation thickness when a 30-mm counter-batten is used at a 60° angle between the screw axis and counter-batten

To determine the maximum spacings and the quantity of screws, contact our technical services department

SIMPSON

Strong-Tie

Screws and Nails for CLT

SIMPSON

Strong-Tie

SWD Structural Double Threaded WOOD Screw

SWD is a construction screw designed to connect two wood members together. The small cap-style head and double thread creates a flexible, hidden assembly with high strength. The differentiated thread pitch creates a clamping effect, reducing the risk of gaps between the wood pieces.

Features:

- · Cap-style head
- Double threaded
- Chisel point

Application:

• Wood to wood

I

Dimensions [mm] B Model No. Item code Bit d I d_h l_{g1} I_{g2} SWD6.5X65 75425 T-30 50 6.5 65 8 28.0 21.5 SWD6.5X90 75426 6.5 8 40.0 33.5 T-30 50 90 SWD6.5X130 8 40.0 33.5 T-30 50 75427 6.5 130 SWD6.5X160 58.5 T-30 75428 6.5 160 8 65.0 50 8 T-30 SWD6.5X190 75429 6.5 190 80.0 73.5 50 SWD6.5X220 95.0 88.5 T-30 75430 6.5 220 10 50 SWD8.0X90 75431 8.0 90 10 40.0 31.5 T-40 50 SWD8.0X130 75432 8.0 130 10 40.0 31.5 T-40 50 T-40 50 SWD8.0X160 75433 8.0 160 10 65.0 56.5 SWD8.0X190 75434 8.0 190 10 80.0 71.5 T-40 50 SWD8.0X220 75435 8.0 220 10 95.0 86.5 T-40 50 SWD8.0X245 75436 8.0 245 10 107.5 99.0 T-40 50 SWD8.0X275 75437 8.0 275 10 107.5 99.0 T-40 50 SWD8.0X300 10 135.0 126.5 T-40 50 75438 8.0 300 SWD8.0X330 75439 10 135.0 126.5 T-40 50 8.0 330

Characteristic properties

Model No.	Yield moment M _{yk} [Nmm]	Withdrawal parameter f _{ax,k,90*} [N/mm ²]	Head pull-through parameter f _{nead,k} [N/mm ²]	Tensile capacity f _{tens,k} [kN]	
SWD6.5	14.5	13.0	29.4	14.3	
SWD8.0 31.2		14.2	38.8	21.9	

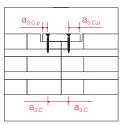
Strong-Tie

WSTNL Collated **WOOD FLOORING** Screw, Twin Lead Thread

WSNTL is a ribbed head screw with a sharp point and twin lead thread, suitable for wood to wood applications such as flooring.

- Wood to wood applications
- Sharp point with twin lead thread
- Bit (BIT3SE) included
- Used with the Quik Drive System

Compatible with Quik Drive® systems - see page 107


WSNTL Electro Galvanised

Model No.	d	I	d _h	d ₁	l _g	Qty per strip	QDPR064E	QD76KE	QDPR076SKE
WSNTL44E	4.6	44	8.4	3.1	30.5	30	\checkmark	✓	✓
WSNTL51E	4.6	50	8.4	3.1	38	30	\checkmark	\checkmark	✓
WSNTL64E	4.6	64	8.4	3.1	51	30	\checkmark	✓	✓
WSNTL76E	4.6	76	8.4	3.1	55	30	-	✓	✓

Design parameters

Model No.	Characteristic yield moment M _{y,k} [Nmm]	Characteristic withdrawal parameter f _{ax,k,90} , [N/mm ²]	Characteristic head pull-through parameter f _{head,k} [N/mm ²]	Characteristic tensile capacity f _{tens,k} [kN]
WSNTL44E	5,000	9.4	15.7	6.7
WSNTL51E	5,000	9.4	15.7	6.7
WSNTL64E	5,000	9.4	15.7	6.7
WSNTL76E	5,000	9.4	15.7	6.7

Panel assembly with a tongue

Model No.		3, wood fibre $\rho_k \ge 38$ r according to the to		Plywood ($\rho_k \ge$ 490 kg/m ³) / C24 graded timber according to the tongue thickness t_p :				
	18 [mm]	22 [mm]	25 [mm]	18 [mm]	22 [mm]	25 [mm]	30 [mm]	
	R _{v.90.k.18} [kN] R _{v.90.k.22} [kN] R _{v.90.k.25} [kN]		R _{v.90.k.18} [kN]	R _{v.90.k.22} [kN]	R _{v.90.k.25} [kN]	R _{v.90.k.30} [kN]		
WSNTL44E	0.9	0.9	0.9	0.9	0.9	0.9	-	
WSNTL51E	0.9	1.0	1.0	0.9	1.0	1.0	0.9	
WSNTL64E	1.2	1.3	1.0	1.3	1.0	1.0	1.0	
WSNTL76E	1.2	1.3	1.3	1.3	1.4	1.4	1.0	

Minimum shear distances (1)

Model No.	Angle between the force and the fibre $= 0^{\circ}$							
	a, [mm]	a ₂ [mm]	a _{3.c} [mm]	a _{3.c.p} [mm]				
WSNTL	18	18	28	14				

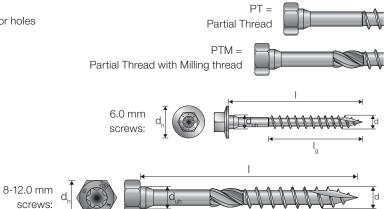
(1) According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz".

Screws and Nails for CLT

SSH Hexagon Head CONNECTOR Screw

SSH is used together with connectors where high load capability is required. The conical shape under the head makes a perfect fit with the connector hole, creating a firm assembly. Featuring the impressive Impreg+ coating which makes the screw suitable for

exterior use and service class 3 conditions. The cut point type 17 prevents cracking, and the milling thread and serrated thread reduce the insertion torque. SSH has a 6 lobe drive and a hexagonal head, enabling installation with either 6 lobe or Hex bits.


Features:

- Hex head with integrated 6 lobe drive
- · Conical shape under the head for maximum fit in connector holes
- No predrilling required
- · Milling thread
- · Serrated coarse thread
- Type 17 point

Application:

• Connectors to CLT

SSH Impreg[®]+ Coating

SSH impreg	+ Obating						'g	
Model No.	Item code		Dimensio	Thread	Bit	B		
		d / d _{uh}	I	d _h	l _g			Ŷ
SSH6.0X40	75128	6.0	40	10	23	PT	T-30 / SW-10	100
SSH6.0X50	75129	6.0	50	10	33	PT	T-30 / SW-10	100
SSH6.0X60	75130	6.0	60	10	42	PT	T-30 / SW-10	100
SSH6.0X75	75131	6.0	75	10	42	PTM	T-30 / SW-10	100
SSH6.0X90	75132	6.0	90	10	42	PTM	T-30 / SW-10	100
SSH6.0X120	75133	6.0	120	10	75	PTM	T-30 / SW-10	100
SSH8.0X40	75134	8.0	40	13	Full thread	FT	T-40 / SW-13	50
SSH8.0X50	75135	8.0	50	13	Full thread	FT	T-40 / SW-13	50
SSH8.0X60	75136	8.0	60	13	42	PT	T-40 / SW-13	50
SSH8.0X80	75137	8.0	80	13	42	PTM	T-40 / SW-13	50
SSH8.0X90	75138	8.0	90	13	42	PTM	T-40 / SW-13	50
SSH8.0X100	75139	8.0	100	13	55	PTM	T-40 / SW-13	50
SSH8.0X120	75140	8.0	120	13	85	PTM	T-40 / SW-13	50
SSH8.0X140	75141	8.0	140	13	85	PTM	T-40 / SW-13	50
SSH8.0X160	75142	8.0	160	13	110	PTM	T-40 / SW-13	50
SSH8.0X180	75143	8.0	180	13	110	PTM	T-40 / SW-13	50
SSH8.0X200	75144	8.0	200	13	110	PTM	T-40 / SW-13	50
SSH8.0X240	75145	8.0	240	13	110	PTM	T-40 / SW-13	50
SSH8.0X260	75146	8.0	260	13	110	PTM	T-40 / SW-13	50
SSH8.0X280	75147	8.0	280	13	110	PTM	T-40 / SW-13	50
SSH8.0X300	75148	8.0	300	13	110	PTM	T-40 / SW-13	50
SSH10.0X40	75149	10.0	40	15	Full thread	FT	T-40 / SW-15	50
SSH10.0X50	75150	10.0	50	15	Full thread	FT	T-40 / SW-15	50
SSH10.0X60	75151	10.0	60	15	42	PT	T-40 / SW-15	50
SSH10.0X80	75152	10.0	80	15	42	PTM	T-40 / SW-15	50
SSH10.0X90	75153	10.0	90	15	42	PTM	T-40 / SW-15	50
SSH10.0X100	75154	10.0	100	15	55	PTM	T-40 / SW-15	50
SSH10.0X120	75155	10.0	120	15	85	PTM	T-40 / SW-15	50

Continues on next page.

91

FT = Full Thread

SSH Impreg®+ Coating

Madal Na	Itom codo		Dimensio	ons [mm]		Throad	Bit	Æ
Model No.	Item code	d / d _{uh}	I	d _h	lg	Thread	DIL	\square
SSH10.0X140	75156	10.0	140	15	85	PTM	T-40 / SW-15	50
SSH10.0X160	75157	10.0	160	15	110	PTM	T-40 / SW-15	50
SSH10.0X180	75158	10.0	180	15	110	PTM	T-40 / SW-15	50
SSH10.0X200	75159	10.0	200	15	110	PTM	T-40 / SW-15	50
SSH10.0X240	75160	10.0	240	15	125	PTM	T-40 / SW-15	50
SSH10.0X280	75161	10.0	280	15	125	PTM	T-40 / SW-15	50
SSH12.0X60	75162	12.0	60	17	Full thread	FT	T-40 / SW-17	25
SSH12.0X80	75163	12.0	80	17	42	PTM	T-40 / SW-17	25
SSH12.0X90	75164	12.0	90	17	42	PTM	T-40 / SW-17	25
SSH12.0X100	75165	12.0	100	17	55	PTM	T-40 / SW-17	25
SSH12.0X120	75166	12.0	120	17	85	PTM	T-40 / SW-17	25
SSH12.0X140	75167	12.0	140	17	85	PTM	T-40 / SW-17	25
SSH12.0X160	75168	12.0	160	17	110	PTM	T-40 / SW-17	25
SSH12.0X180	75169	12.0	180	17	110	PTM	T-40 / SW-17	25
SSH12.0X200	75170	12.0	200	17	110	PTM	T-40 / SW-17	25

Characteristic properties

		Pr	oduct characteristic properti	es	
Model No.	Characteristic Yield Moment M _{y,k} [Nm]	Characteristic withdrawal parameter - f _{ax,k,90°} [N/mm ²]	Characteristic head pull-through parameter - f _{head,k} [N/mm²]	Characteristic tensile capacity - f _{tens,k} [kN]	Torsional ratio
SSH6.0	12.5	16.9	31.8	12.8	2.5
SSH8.0	29.5	15.6	22.0	23.2	3.1
SSH10.0	50.3	13.2	20.1	32.0	3.4
SSH12.0	67.1	12.1	18.5	39.6	3.0

Minimum distance for screws under shear forces(1)

		Angle be	etween load	axis and gr	ain = 0°	Angle between load axis and grain = 90°						
Model No.	a _{1.0°} [mm]	a _{2.0°} [mm]	a _{3.t.0°} [mm]	a _{3.c.0°} [mm]	a _{4.t.0°} [mm]	a _{4.c.0°} [mm]	a _{1.90°} [mm]	a _{2.90°} [mm]	a _{3.t.90°} [mm]	a _{3.c.90°} [mm]	a _{4.t.90°} [mm]	a _{4.c.90°} [mm]
SSH6.0	30	24	80	24	18	18	24	24	80	42	24	18
SSH8.0	40	32	80	32	24	24	32	32	80	56	56	24
SSH10.0	50	40	80	40	30	30	40	40	80	70	40	30
SSH12.0	60	48	84	48	36	36	48	48	84	84	48	36

 $^{(1)}a_1$ and a_2 can be multiplied by 0,85 for panel/timber assembly, and by 0,7 for steel/timber assembly.

Minimum distance for screws under tensile forces

Model No.	a, [mm]	a ₂ [mm]	a _{1,cg} [mm]	a _{2,CG} [mm]	a _{2,red*} [mm]
SSH6.0	42	30	60	24	-
SSH8.0	56	40	80	32	-
SSH10.0	70	50	100	40	-
SSH12.0	84	60	120	48	-

* Valid if the applied spacings comply with $a_1xa_2 \ge 25d^2$ Calculation according to EN1995-1-1:2004+A2:2014

Screws and Nails for CLT SIMPSON

Characteristic values for steel-to-CLT connections

			Steel / C24 CLT		
	★ ★			*	
	Axial (1)	Thin plate	shear (2)	Thick plate	e shear (3)
Model No.	R _{ax.st.k} [kN]	R _{v.0.st.k} [kN]	R _{v.90.st.k} [kN]	R _{v.0.st.k} [kN]	R _{v.90.st.k} [kN]
SSH6.0x40	2.3	1.7	1.7	2.7	2.7
SSH6.0x50	3.4	2.2	2.2	3.3	3.3
SSH6.0x60	4.3	2.6	2.6	3.8	3.8
SSH6.0x75	4.3	3.0	3.0	3.8	3.8
SSH6.0x90	4.3	3.0	3.0	3.8	3.8
SSH6.0x120	7.6	3.8	3.8	4.6	4.6
SSH8.0X40	4.0	2.3	2.3	4.3	4.3
SSH8.0X50	5.2	2.9	2.9	5.0	5.0
SSH8.0x60	5.2	3.5	3.5	5.5	5.5
SSH8.0X80	5.2	4.7	4.7	6.2	6.2
SSH8.0x90	5.2	4.8	4.8	6.2	6.2
SSH8.0x100	6.9	5.2	5.2	6.6	6.6
SSH8.0x120	10.6	6.1	6.1	7.5	7.5
SSH8.0x140	10.6	6.1	6.1	7.5	7.5
SSH8.0x160	13.7	6.9	6.9	8.3	8.3
SSH8.0x180	13.7	6.9	6.9	8.3	8.3
SSH8.0x200	13.7	6.9	6.9	8.3	8.3
SSH8.0x240	13.7	6.9	6.9	8.3	8.3
SSH8.0x260	13.7	6.9	6.9	8.3	8.3
SSH8.0x280	13.7	6.9	6.9	8.3	8.3
SSH8.0x300	13.7	6.9	6.9	8.3	8.3
SSH10.0x40	4.0	2.3	2.3	4.3	4.3
SSH10.0x50	5.5	3.4	2.3	6.2	5.1
SSH10.0x60	5.5	4.1	2.8	6.7	5.4
SSH10.0x80	5.5	6.3	4.9	8.4	7.0
SSH10.0x90	5.5	6.3	4.4	8.4	6.6
SSH10.0x100	7.3	6.7	4.9	8.8	7.4
SSH10.0x120	11.2	7.7	5.9	9.8	8.6
SSH10.0x140	11.2	7.7	6.9	9.8	8.6
SSH10.0x160	14.5	8.6	7.7	10.6	9.4
SSH10.0x180	14.5	8.6	7.7	10.6	9.4
SSH10.0x200	14.5	8.6	7.7	10.6	9.4
SSH10.0x240	16.5	9.1	8.2	11.1	9.9
SSH10.0x280	16.5	9.1	8.2	11.1	9.9
SSH12.0x60	7.0	4.4	3.0	7.7	6.3
SSH12.0x80	7.0	6.0	4.1	8.9	7.0
SSH12.0x90	7.0	6.8	4.6	9.6	7.4
SSH12.0x100	8.0	7.6	5.2	10.3	8.1
SSH12.0x120	12.3	9.0	6.2	11.4	10.0
SSH12.0x140	12.3	9.0	7.3	11.4	10.0
SSH12.0x160	16.0	9.9	8.4	12.3	10.9
SSH12.0x180	16.0	9.9	8.9	12.3	10.9
SSH12.0x200	16.0	9.9	8.9	12.3	10.9

(1) With a plate thickness \leq d (2) Thin plate: thickness \leq 0.5 x d

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

(3) Thick plate: thickness \geq d

In case of intermediate thicknesses, the strength can be obtained through interpolation.

Strong-Tie

ZYKLOP[™] Angled Washer with Long Screws

Using the ZYKLOP[™] system with a screw angled at 30°, 45 or 60° guarantees high sliding resistance and increases the rigidity of the timber-metal assembly. When combined with a steel plate, $\mathsf{ZYKLOP}^{\scriptscriptstyle\mathsf{M}}$ effectively transfers the sheet metal stresses to the timber element.

Features:

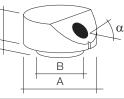
- Discreet and aesthetic finish for the assembly
- Reduction in the sheet metal thickness between 50 and 80%: no need for extra thicknesses or machining
- Can be fitted to the side or end of the timber member
- Supplied with screws

Dimensions

Suggested steel ZYKLOP[™] connector dimensions SST screw Type of thickness limit** Model No. drilling template В С D Х* А Slope α [°] α x L Thread length t_{gr} 6x200 3 BZYK6 7YK10 32 20 11.5 1.9 30 16 192 ZYK11 25 16 10 1.9 45 11 6x200 192 6 BZYK6 10 ZYK12 20 12 7.5 1.9 60 8 6x200 192 BZYK6 5 45 27 14 2.9 30 23 8x300 BZYK8 ZYK40 290 8x300 ZYK41 30 20 12 2.9 45 14 290 8 BZYK8 ZYK42 25 16 9.5 2.5 60 10 8x300 290 9 BZYK8 ZYK70 50 30 16.5 3.4 30 26 10x400 388 5 BZYK10 ZYK71 35 24 15 3.4 45 16 10x400 388 8 BZYK10 ZYK72 30 20 11 2.9 60 11 10x400 388 12 BZYK10 ZYKT39 25 16 7.4 14 30 14 6x200 192 3 BZYK6 ZYKT69 30 8x300 290 BZYK8 30 20 7.5 14 17 4 ZYKT99 35 20 7.5 19 30 16 10x400 388 5 BZYK10

* Length of the screw that passes through the ZYKLOP[™] washer, to be subtracted from the screw length to determine the effective length of the thread when calculating resistance. ** tgr = limit thickness of the sheet metal up to which the hole can simply be drilled in the plate with a diameter of B+0.1/1 mm. For greater thicknesses, an additional notch must

be made in the metal to allow the body of the angled screw to pass through.



С

D

Application:

- High-load assemblies, lifting, reinforcements, nodes, etc.
- Embedded and joined elements to solid wood, glulam, CLT, LVL and wood-based panels
- · Fixing of a timber beam to a steel framework

SIMPSO

Strong-Tie

SIMPSON

Strong-Tie

Screw strength parameters

	Withdrawal para		
Model No.	Side of the timber member $r_{_{\text{ax},k,\alpha}}$	End of the timber member $r_{ax,k,\alpha}$	R _{t,u,k} [kN]
ZYK10	62.1	81.0	12.5
ZYK11	81.0	81.0	12.5
ZYK12	81.0	62.1	12.5
ZYK40	66.9	87.2	23.5
ZYK41	87.2	87.2	23.5
ZYK42	87.2	66.9	23.5
ZYK70	88.2	115.0	33.0
ZYK71	115.0	115.0	33.0
ZYK72	115.0	88.2	33.0
ZYKT39	62.1	81.0	12.5
ZYKT69	66.9	87.2	23.5
ZYKT99	88.2	115.0	33.0

ZYKLOP[™] connector strength parameters

	Z	YKLOP™ fitted to t	he side of the bear	n	Z	YKLOP™ fitted to t	he end of the bean	n	
Model No.	Maximum strengtl sheet meta			netal thickness t _{st} ted strength	Maximum st associated sheet	•	Minimum sheet metal thickness t _{st} and associated strength		
WOUCH NO.	Max. R _{k,zyk} [kN]	Min. t _{st} [mm]	Min. t _{st} [mm]	R _{k,zyk} [kN]	Max. R _{k,ZYK} [kN]	Min. t _{st} [mm]	Min. t _{st} [mm]	R _{k,zyk} [kN]	
ZYK10	10.8	2.0	2.0	10.8	10.8	2.0	2.0	10.8	
ZYK11	8.8	4.0	2.0	4.6	8.8	2.0	2.0	8.8	
ZYK12	6.3	4.5	2.0	2.6	6.3	2.0	2.0	6.3	
ZYK40	20.4	3.0	3.0	20.4	20.4	3.0	3.0	20.4	
ZYK41	16.6	5.5	3.0	7.8	16.6	3.0	3.0	16.6	
ZYK42	11.8	6.5	2.5	3.8	11.8	3.5	2.5	9.0	
ZYK70	28.6	3.5	3.5	28.6	28.6	3.5	3.5	28.6	
ZYK71	23.3	7.0	3.5	10.5	23.3	3.5	3.5	23.3	
ZYK72	16.5	7.5	3.0	5.3	16.5	4.0	3.0	12.7	
ZYKT39	10.8	2.5	1.5	7.7	10.8	1.5	1.5	10.8	
ZYKT69	20.4	4.0	2.0	10.8	20.4	2.0	2.0	20.4	
ZYKT99	28.6	5.0	2.0	13.4	28.6	2.0	2.0	28.6	

* These are the maximum load values that must not be exceeded, even for thicker sheet metal plates.

Intermediate values may be interpolated linearly.

The load capacity of a ZYKLOP[™] connector is determined as follows:

$$R_{d} = \min \begin{cases} R_{k,ZYK} \times n \times k_{mod} / \gamma_{m} \\ R_{ax,screw,d} \times \cos a \times n_{ef} \end{cases}$$

Where:

 $\begin{aligned} R_{ax,screw,d} &= \min \begin{cases} r_{ax,k,\alpha} \times l_{ef} \times k_{mod}/\gamma_m \\ R_{t,u,k}/\gamma_m \end{cases} \end{aligned}$

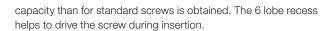
$$\frac{F_{i,d}}{R_{i,d}} \le 1$$

n: Quantity of ZYKLOPTM connectors on a sheet metal plate anchored to the same part. For n>1: $n_{ef}=n^{0.9}$; for n=1 and $l_{ef}\geq 20$ x d: $n_{ef}=0.5$ For $\beta>0$, you must also prove: $F_{ax,\,screw,\,d}$ / $R_{ax,\,screw,\,d}\leq 1$

CSA CONNECTOR Screw

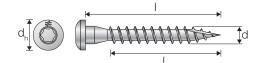
CSA connector screw is developed for mounting of Simpson Strong-Tie® connectors to wood, in order to obtain the published load bearing capacities. The conical shape under the head ensures a secure fit and full contact with the connector which increases the transfer of force. A fixed connection with larger cross-bearing

Features:


- 6 lobe drive
- Conical shape under the head for maximum fit in connector holes
- Type 17 point
- Available loose or on a collated strip
- Used with the Quik Drive System

Compatible with Quik Drive® systems - see page 106

ETA-04/0013


CSA Electro Galvanised

Application:

Connectors to wood

Model No.	d	I	d,	d,	I _a		– C24 graded timber TA 04/0013 [kN]			
					y y	R _{lat.k}	R _{ax.k}		$ \Psi$	
CSA5.0X25	5.0	25	8.3	3.1	19	1.5	1.4	T-20	250	-
CSA5.0X35	5.0	35	8.3	3.1	29	2.0	2.1	T-20	250	-
CSA5.0X40	5.0	40	8.3	3.1	34	2.3	2.5	T-20	250	-
CSA5.0X50	5.0	50	8.3	3.1	44	2.6	3.2	T-20	250	-
CSA5.0X80-DE	5.0	80	8.3	3.1	74	3.5	5.4	T-20	250	-
CSA5.0X35T*	5.0	35	8.3	3.1	29	2.0	2.1	T-20	1,500	√
CSA5.0X40T*	5.0	40	8.3	3.1	34	2.3	2.5	T-20	1,500	~
CSA5.0X50T*	5.0	50	8.3	3.1	44	2.6	3.2	T-20	1,000	✓

*Collated screws for Quik Drive systems.

Minimum shear distances (1)

	Angle between the force and the fibre = 0°							Angle between the force and the fibre = 90°					
Model No.	a _{1.0°} [mm]	a _{2.0°} [mm]	a _{3.t.0°} [mm]	a _{3.c.0°} [mm]	a _{4.t.0°} [mm]	a _{4.c.0°} [mm]	a _{1.90°} [mm]	a _{2.90°} [mm]	a _{3.t.90°} [mm]	a _{3.c.90°} [mm]	a _{4.t.90°} [mm]	a _{4.c.90°} [mm]	
CSA5.0	20	12.5	30	30	30	12.5	20	12.5	30	30	30	12.5	

(1) According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz".

Screws and Nails for CLT

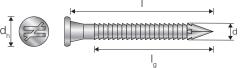
Connector nails for CLT

CNA CONNECTOR Nail

Annular ring-shank connector nails are recommended for structural assemblies and installation of Simpson Strong-Tie® connectors to wood, in order to obtain the published load bearing capacities.

Features:

- Conical shape under the head for maximum fit with connectors
- Annular ring thread
- Available loose or paper collated


Compatible with 34° pneumatic nailers

Connectors to wood

Application:

CNA-PC

CNA Electro Galvanised

Model No.	d	1	р	h	Characteristi	c values [kN]	R
Model No.	u i u _h		d _h	h _t	R _{lat,k}	R _{ax,k}	\square
CNA4.0x35	4.0	35	8.0	1.5	1.7	0.6	250
CNA4.0X40	4.0	40	8.0	1.5	1.9	0.7	250
CNA4.0X50	4.0	50	8.0	1.5	2.2	1.0	250
CNA4.0X60	4.0	60	8.0	1.5	2.4	1.2	250
CNA4.0X75	4.0	75	8.0	1.5	2.5	1.5	250
CNA4.0X35PC34*	4.0	35	8.0	1.5	1.7	0.6	1,500
CNA4.0X40PC34*	4.0	40	8.0	1.5	1.9	0.7	1,500
CNA4.0X50PC34*	4.0	50	8.0	1.5	2.2	1.0	1,000
CNA4.0X60PC34*	4.0	60	8.0	1.5	2.4	1.2	1,000

*Paper collated nails 34°

Minimum shear distances (1)

		Angle bety	ween the fo	rce and the	fibre = 0°		Angle between the force and the fibre = 90°					
Model No.	a _{1.0°} [mm]	a _{2.0°} [mm]	a _{3.t.0°} [mm]	a _{3.c.0°} [mm]	a _{4.t.0°} [mm]	a _{4.c.0°} [mm]	a _{1.90°} [mm]	a _{2.90°} [mm]	a _{3.t.90°} [mm]	a _{3.c.90°} [mm]	a _{4.t.90°} [mm]	a _{4.c.90°} [mm]
CNA4.0xL	24	12	40	24	12	12	12	12	28	24	28	12

(1) According to the technical report by Univ.-Prof. Dr.-Ing. Hans Joachim Blass and Dipl.-Ing Thomas Uibel. "Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz".

Strong-Tie

C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

Mechanical and Chemical Anchor Systems

WA-RL Throughbolt with wide washer100
AT-HP High-performance
multi-material resin102

@strongtieUK

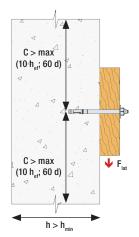
www.strongtie.co.uk

Throughbolt with wide washer WA-RL

Throughbolts are expansion fastening systems for medium loads. The wide washer increases the peel force of the head on a timber element.

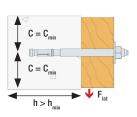
Advantages:

- Low spacings and edge distance
- Quick and easy installation: pre-mounted nut and washer; reduced anchor depth; thread Ø = drilling Ø
- Protected thread during installation: reinforced striking point


Dimensions

Model No.	Thread diameter [mm]	Length [L] [mm]	Max. fixture thickness [tfix] [mm]	Thread length [F] [mm]	Ø max. fixture hole [df] [mm]	Effective embedment depth [hef] [mm]	Ø drilled hole [d0] [mm]	Min. depth of drilling hole [h1] [mm]	Box contents [parts]
WA10123RL	10	123	50	60	12	50	10	70	50
WA10173RL	10	173	100	80	12	50	10	70	50
WA12149RL	12	149	50	100	14	65	12	90	25
WA12199RL	12	199	100	110	14	65	12	90	25

Shear design values - timber-to-timber connections


The following two tables provide the design values for WA-RL throughbolts according to the CLT thickness. **Case 1:** no edge effect (c > 600 mm) or no interaction between the anchors (s > sc). Concrete thickness h > h_{min}.

Model No.	Panel			V _{Rd} [kN]		
Model No.	thickness	$k_{mod} = 0.6$	$k_{mod} = 0.7$	$k_{mod} = 0.8$	$k_{mod}^{}=0.9$	$k_{mod} = 1.1$
WA10123RL	45 mm	3.6	4.2	4.8	5.4	6.6
WA10173RL	≥ 60 mm	4.1	4.8	5.8	6.1	7.5
WA12149RL	45 mm	4.1	4.8	5.5	6.2	7.5
WA12199RL	≥ 60 mm	5.5	6.4	7.3	8.2	10.1

Case 2: edge distance (c = c_{min}), no interaction between the anchors (s > scr). Concrete thickness h > h_{min}.

Model No.	Panel			V _{Rd} [kN]		
Model No.	thickness	$k_{mod} = 0.6$	$k_{mod} = 0.7$	$k_{mod} = 0.8$	$k_{mod} = 0.9$	k _{mod} = 1.1
WA10123RL	45 mm	3.6	4.2	4.7	4.7	4.7
WA10173RL	≥ 60 mm	4.1	4.7	4.7	4.7	4.7
WA12149RL	45 mm	4.1	4.8	5.5	6.2	7.5
WA12199RL	≥ 60 mm	5.5	6.4	7.3	8.0	8.0

Throughbolt with wide washer WA-RL

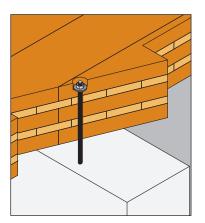
SIMPSON

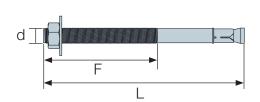
Strong-Tie

Design value - plate fixing to a concrete substrate

					Non-cr	acked concre	ete ⁽³⁾			
Model No.		Tensile - N _{Rd} ⁽¹⁾ [kN]			Shear - V _{Rd} ⁽¹⁻²⁾ [kN]				Dending memory M. Dimi	
	C20/25	C30/37	C40/50	C50/60	C20/25	C30/37	C40/50	C50/60	Bending moment M _{Rd} [Nm]	
WA10123RL	10.7	13.0	15.0	16.5	11.9	13.6	13.6	13.6	38	
WA10173RL	10.7	13.0	15.0	16.5	11.9	13.6	13.6	13.6	38	
WA12149RL	17.6	21.5	24.9	27.3	20.0	20.0	20.0	20.0	66	
WA12199RL	17.6	21.5	24.9	27.3	20.0	20.0	20.0	20.0	66	

1. The published loads are calculated according to the partial safety factors in the ETAs. These loads are calculated for non-reinforced concrete and standard reinforced concrete, with rebars spaced at s \geq 15 cm (all diameters) or s \geq 10 cm if their diameter is less than or equal to 10 mm.


2. Shear loads are specified for a single anchor without taking account of the distance from the edge of the slab. For anchors near the edges (c ≤ max [10 h_{ef}, 60d]), concrete edge failure must be verified in accordance with ETAG 001, Annex C, Design Method A.


 $\sigma R = 3 \text{ N/mm}^2$ can be assumed (σL corresponds to the tensile stress within the concrete is equal to $\sigma L + \sigma R \le 0$. In the absence of a detailed verification, $\sigma R = 3 \text{ N/mm}^2$ can be assumed (σL corresponds to the tensile stress within the concrete as a result of external loads, including forces on the anchors).

Installation

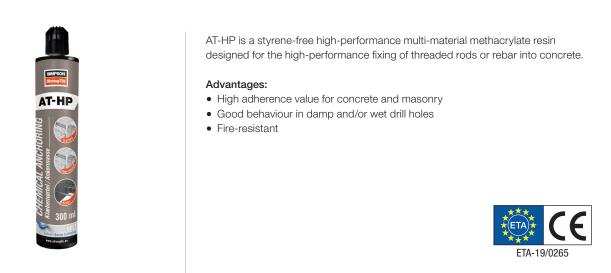
Torquing draws the cone end of the stud into the expansion clip. The clip's segments break and open against the sidewalls of the hole, thereby developing a frictional grip against the substrate.

The result is an expansion anchor by torque-controlled screwing without any special tools required.

Simpson Strong-Tie® disclaims all liability for any incidents caused by an installation other than in accordance with the instructions provided.

Designers are expected to use their experience and judgement when defining the design and installation requirements.

Installation data


C-CLT-UK-2020 @2020 SIMPSON STRONG-TIE COMPANY INC.

Model No.	Minimum spacing distance [s _{min}] [mm]	Min edge distance [c _{min}] [mm]	Characteristic spacing distance [s _{cr.N}] [mm]	Characteristic edge distance [c _{cr.N}] [mm]	Minimum substrate thickness [h _{min}] [mm]
WA10123RL	50	50	150	75	100
WA10173RL	50	50	150	75	100
WA12149RL	70	70	195	98	130
WA12199RL	70	70	195	98	130

Note: a version is available with a conventional washer for fixing steel elements. Refer to WA.

High-performance multi-material resin AT-HP

SIMPSON Strong-Tie

Model No.	Colour	Contents [ml]	Weight [kg]	Quantity per box [parts]
ATHP300BG-UK	Grey	320	0.58	12
ATHP420BG-UK	Grey	420	0.83	12

Assembly data

Model No.	Drill Ø [d _o] [mm]	Max. Ø fixture hole [d _i] [mm]	Drill depth [h _o =h _{ef} =8d] [mm]	Anchor depth [h _o =h _{ef} =12d] [mm]	Width across flats [SW]	Installation torque [T _{inst}] [Nm]
AT-HP + M8	10	9	64	96	13	10
AT-HP + M10	12	12	80	120	17	20
AT-HP + M12	14	14	96	144	19	30
AT-HP + M16	18	18	128	192	24	60
AT-HP + M20	22	22	160	240	30	90
AT-HP + M24	28	26	192	288	36	140

Design values - Non-cracked concrete - plate fixing to a concrete substrate

Model No.	Tensile - N _{Rd} [kN]	Shear - V _{Rd} [kN]	Dending memory M. (New)
	Non-cracked concrete C20/25	Non-cracked concrete C20/25	Bending moment - M _{Rd} [Nm]
AT-HP + M8	12.0	7.2	15.2
AT-HP + M10	19.3	12.0	29.6
AT-HP + M12	28.0	16.8	52.8
AT-HP + M16	51.4	31.2	133.6
AT-HP + M20	75.4	48.8	260.8
AT-HP + M24	101.3	70.4	448.8

High-performance multi-material resin AT-HP

Installation data

Model No.	Minimum spacing distance [s _{min}] [mm]	Minimum edge distance [c _{min}] [mm]	Characteristic spacing distance [s _{cr.N}] [mm]	Characteristic edge distance [c _{cr.N}] [mm]	Minimum substrate thickness h _{ef} =8d [h _{min}] [mm]
AT-HP + M8	40	40	192	96	100
AT-HP + M10	50	50	240	120	110
AT-HP + M12	60	60	288	144	126
AT-HP + M16	80	80	384	192	158
AT-HP + M20	100	100	480	240	190
AT-HP + M24	120	120	576	288	222

103

Strong-Tie

Related Products

QDBPC50E Quik Drive connector

screw system	.106
Bespoke designs	.107

@strongtieUK♥ f ○ in ▶

www.strongtie.co.uk

Quik Drive

Quik Drive® connector screw system QDBPC50E

• Possible 360° rotation on the adapter or extension pole

SIMPSON

Strong-Tie

- Easily attaches to the screwdriver and extension pole
- Specific loading system with our flexible strip

Areas of application:

• Fixing connectors to timber frames

For more information on Quik Drive, please see our Quik Drive or Premium Fasteners Catalogue on our website in our resources section at www.strongtie.co.uk

Related Products

Quik Drive® screw systems

Strong-Tie

QD76KE MULTI-PURPOSE System

I	Kit contents:	QD76KE	Compatible Screws
Extension	QDEXTE	\checkmark	
Attachment	QD76KE	\checkmark	BHSDZ
Pouch	QUIVER	✓	CBSDQ DTHQ
Mandrel	MANDREL191E-RC	✓	DING
Carry Case	TOOLCASE-LGE	✓	DWF
	BIT2PE (x2)	✓	DWFSD MTH
	BIT2SE (x1)	✓	PPSD
Spare Bits	BIT3SE (x1)	✓	SSDTH SSWSCB
	BIT2SUE	✓	WSC
	BIT3SUE (x1)	✓	WSNTL
	51 mm - NPA2G2	✓	WSNTLG DWHL
Nose Piece	64 mm - NPA25G2	✓	WSHL
	76 mm - NPA3G2	\checkmark	

drywall, flooring and decking • Suitable for screws 25 mm to 76 mm long • Smooth nose piece prevents marking of drywall surface • Use with Mandrel code: MANDREL191E-RC • Self-locking depth adjustment for consistent countersink

 Complete with interchangeable nose pieces, QD76KE can be used for a wide variety of applications including

- of screws
- · Connects easily with screw gun or extension pole
- Made from rugged, Teflon[®] coated self-lubricating material producing a long life and smooth operation
- Available as kits incl. extension, screw guns and more

QDPRO64E FLOORING and **DECKING** System

- Suitable for screws 38 mm to 64 mm long
- · Non-slip nose piece increases stability
- Use with Mandrel code: MANDREL191E-RC
- · Self-locking depth adjustment for consistent countersink of screws
- Curved feeding guide for fast loading
- Replaceable non-skid teeth
- Connects easily with screw gun or extension • Made from rugged, Teflon® coated self-lubricating
- material producing a long life and smooth operation • Available as attachment only or with extension pole
- included

Non-skid nose piece increases stability (not interchangeable).
Uniform toe-nailing and countersink on slick surfaces.

Kit contents:		QDPR064E	QDPR064KE	Compatible screws	
Extension	QDEXTE		✓	CBSDQ DTHQ PPSD SSDCL SSWSCB	SSDTH WSNT WSNTL CHB DCSD
Attachment	QDPR064E	✓	\checkmark		
Pouch	QUIVER		✓		
Mandrel	MANDREL191E-RC	\checkmark	\checkmark		
Carry Case	TOOLCASE-LGE		\checkmark		
Spare Bits	BIT2SE (x2)	\checkmark	\checkmark		
	BIT3SUE	✓	\checkmark		

SSDTH WSNTL WSNTLG CHB DCSD

Bespoke designs

An unrivalled service

At Simpson Strong–Tie our team of specialists can help you design the connectors you might need.

After receiving your blueprints or sketches (endorsed by an engineering consultancy if necessary), we produce all your custom-designed metal connectors.

Since 1 January 2019, Simpson Strong-Tie[®]'s process for manufacturing special parts has been certified to EN 1090-2. This European standard specifies the technical requirements for the execution of steel and stainles steel structures.

The CE standard only applies to parts that are manufactured by our French factory.

A specialist service...

Our "Special" service involves support and guidance using our Technical Departments across Europe for your projects. Irrespective of your needs, we can fulfil all your requirements as part of our special production service, while drawing strength from the superior quality of our production facilities.

For all your bespoke connector and metalwork needs, place your trust in the expertise and quality of Simpson Strong-Tie[®].

Made to specifications

With Simpson Strong-Tie®'s made-to-order service, you can expect a wealth of recognised advantages:

- · Cost analysis based on your drawings and sketches
- Customised parts Each part can be identified via an reference number.
- Expertise in using production machinery:

Bespoke parts are designed and created by a specific production service.

- Plasma and laser cutting (flat/tube)
- Deep drawing press
- Stamping
- Folding
- Manual TIG/MIG welding or automated welding for mass production runs
- Expert knowledge of our certified and qualified welders
- Use of standard and special steel grades and stainless steel Thicknesses can exceed 20mm.

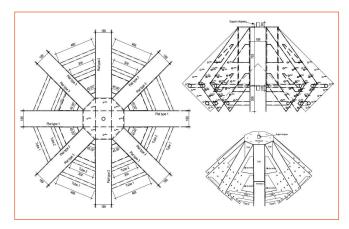
• A choice of finishes for your parts

Galvanisation, zinc alloy electroplating, bichromate, epoxy, rust inhibition, intumescent paint, passivation (stainless steel), and much more.

• Provision of technical notes and material traceability records On request, we can provide technical notes for the parts to be manufactured and material traceability records, and factory inspection certificates.

Related Products

Bespoke designs

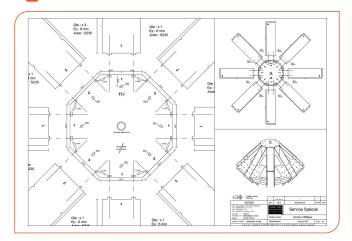

Your custom parts: You design, we produce!

From the drawing board... to delivery at the project site

From start to finish, you have access to a single point of contact for the special and standard parts to be delivered to your worksite.

Take advantage of an end-to-end support service for manufacturing your parts!

Receipt of the quotation request and drawings Send your request to our techincal department: (Contact your local technical team).


Economic project assessment and issuing of a proposal

At this stage, the special products department analyses the project's economic aspects and can also provide a technical study on request.

Validation of the order

Creation of production plans

Manufacture of special parts

Quality control procedures are carried out at each step when manufacturing your special parts.

Delivery of the finished products to the required location, whether your workshop or straight to the construction site.

During the initial stages of the project, you can hone your requirements by discussing them with our technicians.

Bespoke designs

Special products and modified products

What is a special product?

Special products are the result of a specific design process. They are intended for a given project, they meet non-standard requirements and they are produced in our production facilities. Consequently, non-standard products cannot be CE marked in accordance with regulations.

Special products and modified products:

Special products are designed by the customer and are manufactured by Simpson Strong-Tie[®] according to the customer's specifications. Simpson Strong-Tie[®] cannot and does not make any recommendations regarding the suitability of the special products for their use.

Any product modified by the designer or the user is under the sole responsibility of the person who recommended or carried out such a modification. Designers must provide the necessary installation instructions. Simpson Strong-Tie[®] cannot be held responsible for such modifications or for the consequences of their implementation.

Related Products

Visit our literature library for our full list of product catalogues: www.strongtie.co.uk

For further techincal assistance: Call: 01827 255 600 Email: uktechnical@strongtie.co.uk

DENMARK SIMPSON STRONG-TIE® A/S Hedegardesvej 11, Boulstrup DK - 8300 Odder

Tel : (+45) 87 81 74 00 info@strongtie.dk www.strongtie.dk

NORWAY SIMPSON STRONG-TIE® CO/ Christiania Spigerverk Smalvollveien 58, 0667 Oslo Tel : (+47) 2202 1300 www.strongtie.no

SWEDEN SIMPSON STRONG-TIE® CO/ Gbo Fastening Systems AB Bruksvägen 2, 593 75 Gunnebo Tel : (+46) 490 300 00 www.strongtie.se

UNITED KINGDOM

UNITED KINGDOM SIMPSON STRONG-TIE[®] Cardinal Point, Winchester Road, Tamworth, Staffordshire Tel: +44 (0) 1827 255 600 Fax: +44 (0) 1827 255 616 info@strongtie.co.uk www.strongtie.co.uk

REPUBLIC OF IRELAND SIMPSON STRONG-TIE®

Kore Development Park John F Kennedy Drive Naas Rd Dublin 12 Tel: +44 (0) 1827 255 600 Fax: +44 (0) 1827 255 616 www.strongtie.ie

POLAND

SIMPSON STRONG-TIE® Sp. Z o. o. ul. Działkowa 115A, 02-234 Warszawa Tel : +48 22 865 22 00 Fax : +48 22 865 22 10 poland@strongtie.com www.strongtie.pl

GERMANY SIMPSON STRONG-TIE[®] GmbH Hubert-Vergölst-Str. 6-14 D- 61231 Bad Nauheim Tel : +49 (0)6032 8680-0 info@simpsonstrongtie.de www.strongtie.de

FRANCE

SIMPSON STRONG-TIE® ZAC des 4 Chemins, 85400, Sainte Gemme La Plaine Tel : (+33) 2 51 28 44 00 www.simpson.fr