

ZAVOD ZA GRADBENIŠTVO SLOVENIJE SLOVENIAN NATIONAL BUILDING AND CIVIL ENGINEERING INSTITUTE

Dimičeva 12, 1000 Ljubljana, Slovenija

Tel.: +386 (0)1 280 44 72, +386 (0)1-280 45 37

Fax: +386 (0)1 280 44 84 e-mail: info.ta@zag.si http://www.zag.si Designated according to Article 29 of Regulation (EU) Član Member of

European Technical Assessment

et A-10/0425 of 21.08.2019

English version prepared by ZAG

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in according to Regulation (EU) No 305/2011, on the basis of

This version replaces

ZAG Ljubljana

FM-X5

33: Plastic anchor for multiple use in concrete and masonry for non-structural applications

FRIULSIDER S.p.A.
via Trieste, 1
33048 San Giovanni al Natisone (UD)
Italy
www.friulsider.com

via Trieste, 1 33048 San Giovanni al Natisone (UD) Italy

www.friulsider.com

20 pages including 17 annexes, which form an integral part of the document

ETAG 020: Plastic anchors for multiple use in concrete and masonry fro non-structural applications, edition 2012, used as EAD

ETA-10/0425 issued on 15.11.2017

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific parts

1 Technical description of the product

The FM-X5 is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanized steel or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The installed anchor is shown in Annex A1.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Chapter 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the manufacturer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Performance of the product and references to the methods used for this assessment 3

3.1 Mechanical resistance and stability (BWR 1)

Requirements with respect to the mechanical resistance and stability of non-load bearing parts of the works are not included in this basic work requirement but are under basic work requirement safety in use.

3.2 Safety in case of fire (BWR 2)

According to the Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire" it can be assumed that for fastening of facade systems the load bearing behaviour of the Plastic anchor FM-X5 \$\phi\$ 10 has a sufficient resistance to fire at least 90 minutes (R90) if the admissible load $[F_{Rk}/(\gamma_M \times \gamma_F)]$ is ≤ 0.8 kN (no permanent centric tension load).

Hygiene, health and environment (BWR 3) 3.3

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transported European legislation and national laws, regulations and administrative provisions). In order to meet provisions of the regulation (EU) No 305/2011, these requirements need also to be complied with, when they apply.

3.4 Safety in use (BWR 4)

The basic work requirements for safety in use are listed in Annexes C1 and C12.

Protection against noise (BWR 5) 3.5

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

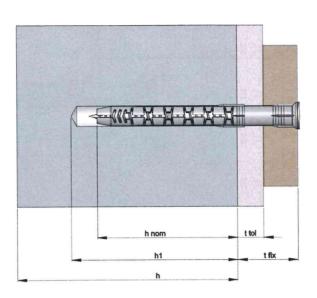
No performance determined.

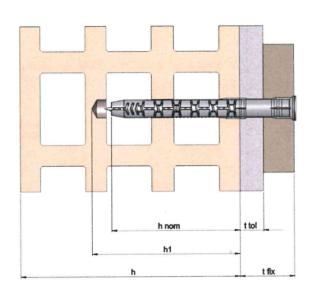
General aspects relating to fitness for use

Durability and serviceability are only ensured if specifications of intended use according Annex B1 are kept.

LJUBLJANA

- 4 Assessment and verification of constancy of performance (AVCP)
 - According to the decision 97/463/EC of the European Commission¹ the system of assessment and verification of constancy of performance (see Annex V to regulation (EU No 305/2011) 2+ apply.
- 5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the Control plan deposited at the Slovenian National Building and Civil Engineering Institute (ZAG Ljubljana).


Issued in Ljubljana on 21.08.2019

Signed by:
Franc Capuder, M.S.

Head of Service of TAB

Official Journal of the European Communities L 198 of 25.07.1997

h₁ = depth of drill hole to deepest point

h_{nom} = overall plastic anchor embedment depth in base material

h = thickness of member

t_{tol} = thickness of non-structural layer

 t_{fix} = thickness of fixture

Product description Installed condition

Annex A1

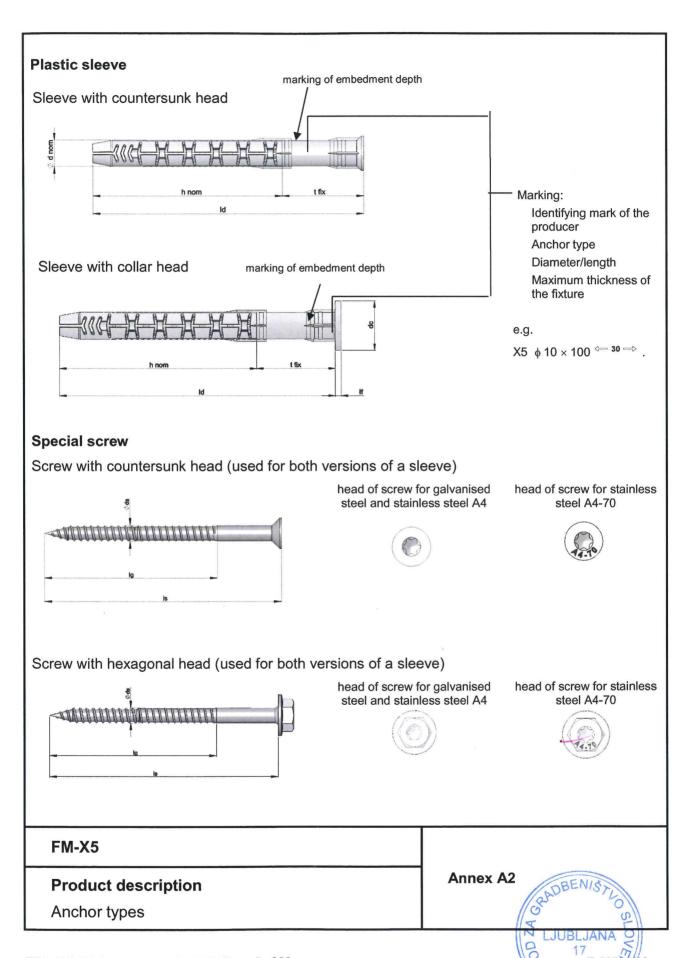


Table A1: Anchor dimensions

Anchor type			FM-X5 8	FM-X5 10
Overal plastic anchor embedment depth	h _{nom} ≥	[mm]	70	70
Plastic sleeve				
Plastic sleeve diameter	d_{nom}	[mm]	8	10
Length of plastic sleeve	l _d	[mm]	80-170	85-270
Diameter of collar head	d _c	[mm]	-	18
Thickness of collar head	l _f	[mm]	-	2,2
Thickness of fixture	t _{fix}	[mm]	1-100	1-200
Special screw				
Screw diameter	ds	[mm]	6	7
Length of screw	Is	[mm]	85-175	90-275
Minimum length of thread	lg	[mm]	75	75

Table A2: Materals

Part	Material
Anchor sleeve	Polyamide PA 6 acc. To ISO 1874 - grey color
Special screw	steel ϕ 7; galvanized 5µm acc. to EN ISO 4042 grey galvanic coating 10 µm acc. to EN ISO 4042; $f_{uk} \geq 600$ MPa, $f_{yk} \geq 480$ MPa stainless A4 $-$ 1.4401 or 1.4404 or 1.4571 or 1.4578, $f_{uk} \geq 580$ MPa, $f_{yk} \geq 470$ MPa stainless A4-70 $-$ 1.4401 or 1.4404 or 1.4571 or 1.4578, $f_{uk} \geq 700$ MPa, $f_{yk} \geq 450$ MPa steel ϕ 6; galvanized 5µm acc. to EN ISO 4042 grey galvanic coating 10 µm acc. to EN ISO 4042; $f_{uk} \geq 520$ MPa, $f_{yk} \geq 420$ MPa stainless A4 $-$ 1.4401 or 1.4404 or 1.4571 or 1.4578, $f_{uk} \geq 580$ MPa, $f_{yk} \geq 470$ MPa stainless A4-70 $-$ 1.4401 or 1.4404 or 1.4571 or 1.4578, $f_{uk} \geq 700$ MPa, $f_{yk} \geq 450$ MPa

FM-X5	
Product description	Annex A3
Dimensions and materials	18 OS

Specifications of intended use

Anchorages subject to:

- · Static and quasi static load
- · Multiple fixing for non-structural applications

Base materials:

- Reinforced and non-reinforced normal weight concrete C12/15 to C50/60 (use category A) according EN 206-1: 2003:
- Solid masonry (use category B), according to Annex C1 and C3;
- Hollow or perforated masonry (use category C) according to Annex C1, C4-C10;
- Mortar strength class of the masonry has to be at least M 2,5 according to EN 998-2: 2003;
- Autoclaved Aerated Concrete (use category D) according to Annex C1 and C11;
- For other base materials of the use categories A, B, C and D the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition March 2012, Annex B.

Temperature range:

- a: -40°C to +40°C (max. long term temperature +24°C and max. long term temperature +40°C)
- b: -40°C to +80°C (max. long term temperature +50°C and max. long term temperature +80°C)

Use conditions (Environmental conditions):

- The specific screw made of galvanized steel may only be used in structures subject to dry internal conditions.
- The specific screw made of stainless steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The design of anchorages is carried out in compliance with ETAG 020, Guideline for European Technical Approval of "Plastic Anchors for Multiple Use in Concrete and Masonry for Non-structural Applications", Annex C under the responsibility of an engineer experienced in anchorages.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the
 relevant tolerances.

Installation:

- Anchor installation carried out by appropriately qualified personnel under the supervision of the person responsible for technical matters on site.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in this European Technical Approval
- Drilling method according Annex C3 to C11 for use category A, B, C and D.
- Temperature during installation of the anchor ≥ -20 °C (plastic sleeve and base material)
- Checks before placing the anchor, to ensure that the characteristic values of the base material in which the
 anchor is to be placed, is identical with the values, which the characteristic loads apply for.
- · Placing drill holes without damaging the reinforcement.
- Holes to be cleaned of drilling dust.
- In case of aborted hole: New drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar.
- The plastic sleeve is inserted through the fixture by slight hammer blows and the special screw is screwed in
 until the head of the screw touches the sleeve. The anchor is correct mounted, if there is no turn-through of the
 plastic sleeve in the drill hole and if slightly move on turning of the screw is impossible after the complete turn-in
 of the screw.

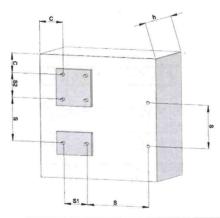
FM-X5	
Intended use Specification	Annex B1

E-00559

Table B1: Installation parameters

Anchor type		The State of	FM-X5 8	FM-X5 10
Drill hole diameter	d ₀ =	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of frill hole to deepest point	h₁ ≥	[mm]	80	80
Overal plastic anchor embedment depth ¹⁾	h _{nom}	[mm]	70	70
Diameter of clearance hole in the fixture	d _f	[mm]	8,5	10,5

¹⁾ See Annex A1


Table B2: Minimum thickness of member, edge distance and anchor spacing in concrete

FM-X5		rae e. i.	Concrete C12/15	Concrete ≥ 16/20
Minimum thickness of member	h _{min}	[mm]	100	100
A.P	C _{min}	[mm]	80	60
Minimum spacing and edge distance	S _{min}	[mm]	80	60
Characteristic edge distance	C _{cr,N}	[mm]	140	100

Table B3: Minimum thickness of member, edge distance and anchor spacing in masonry

FM-X5	Masonry		
Minimum thickness of member	h _{min}	[mm]	106 ²⁾
Single anchor			
Minimum spacing	S _{min}	[mm]	250
Minimum edge distance		[mm]	100
Anchor group			
Spacing perpendicular to free edge	S1 _{min}	[mm]	200
Spacing parallel to free edge		[mm]	400
Minimum edge distance	C _{min}	[mm]	100

²⁾ See Annexes C3 to C10

FM-X5	
Intended use	Annex B2 ADBENIST
Installation parameters, minimum thickness, edge distance and spacing	N LJUBLJANA O

E-00559/19

Table C1: Base material

Base material	Dimensions L×B×H [mm]	Minimum compressive strength [MPa]	Bulk density class [kg/dm³]	Annex					
Concrete Concrete ≥ C12/15 EN 206-1									
Concrete ≥ C12/15	Annex C2								
Solid masonry									
Solid brick acc. to EN 771-1	251×120×55	43,77	≥ 1,8	Annex C3					
Hollow or perforated masonry	1								
Hollow clay brick – bimattone acc. to EN 771-1	250×120×120	27,30	≥ 1,0	Annex C4					
Hollow clay brick – alveolater svizzero pesante acc. to EN 771-1	300×250×190	13,83	≥ 0,9	Annex C5					
Hollow clay brick – alveolater incastro 35 acc.to EN 771-1	350×240×245	10,93	≥ 0,8	Annex C6					
Hollow clay brick – blocco leggero acc. to EN 771-1	250×120 500	7	≥ 0,5	Annex C7					
Hollow clay brick – poroton acc.to EN 771-1	250×300×190	22	≥ 0,9	Annex C8					
Hollow clay brick – BP category 1 – HD acc.to EN 771-1	224×106×54	30	≥ 1,3	Annex C9					
Hollow brick light weight concrete BC 203 n°26 acc.to EN 771-3	490×200×190	4	≥ 0,95	Annex C10					
Autoclaved Aerated Concrete – AAC gasbeton evolution 500	625×250×200	2,5	≥ 0,50	Annex C11					

Table C2: Characteristic bending resistance of the special screw in concrete, masonry and Autoclaved Aerated Concrete

			Galvanized steel FM-X5 8 FM-X5 10		1	ss steel 4	Stainless steel A4-70		
					FM-X5 8	FM-X5 10	FM-X5 8	FM-X5 10	
Characteristic bending resistance	$M_{Rk,s}$	[Nm]	8,61	16,84	9,60	21,95	13,57	24,78	
Partial safety factor	γ _{Ms} 1)		1,23	1,25	1,25	1,25	1,56	1,56	

¹⁾ In absence of other national regulations

FM-X5		
Performance	Annex C1	
Base material, characteristic bending resistance of the screw		GRADBEN/STYLO

Table C3: Characteristic resistance for use in concrete

Anchor type					FM-X5 10		
Steel failure (special screw)			Stainle		Galvan.	Stainles	s steel
		steel	A4	A4-70	steel	A4	A4-70
$N_{Rk,s}$	[kN]	11,0	12,3	16,5	18,1	21,2	25,0
γ _{Ms}	[-]	1,48	1,48	1,88	1,50	1,48	1,88
$V_{Rk,s}$	[kN]	5,52	6,16	8,25	9,05	10,60	12,5
1)	[-]	1,23	1,23	1,56	1,25	1,25	1,56
Pull-out failure (plastic sleeve)							
$N_{Rk,p}$	[kN]		2,5			3,5	
$N_{Rk,p}$	[kN]		1,2			2,5	
γ _{Mc} 1)	[-]				1,8		
$N_{Rk,p}$	[kN]	1,5 2,5					
	[kN]	0,75 1,5					
1)	[-]						
	V _{Rk,p} γ _{Ms} N _{Rk,p} γ _{Mc} 1) γ _{Mc} N _{Rk,p} γ _{Mc} N _{Rk,p} γ _{Mc} N _{Rk,p}	$\begin{array}{c c} \gamma_{Ms}^{1)} & [-] \\ V_{Rk,s} & [kN] \\ \gamma_{Ms}^{1)} & [-] \\ \hline \\ N_{Rk,p} & [kN] \\ N_{Rk,p} & [kN] \\ \gamma_{Mc}^{1)} & [-] \\ \hline \\ N_{Rk,p} & [kN] \\ N_{Rk,p} & [kN] \\ \hline \\ N_{Rk,p} & [kN] \\ \hline \end{array}$	Galvan. steel N _{Rk,s} [kN] 11,0 γ _{Ms} [-] 1,48 V _{Rk,s} [kN] 5,52 γ _{Ms} [-] 1,23 N _{Rk,p} [kN] N _{Rk,p} [kN] γ _{Mc} [-] N _{Rk,p} [kN] N _{Rk,p} [kN]	Steel A4 N _{Rk,s} [kN] 11,0 12,3 γ _{Ms} [-] 1,48 1,48 V _{Rk,s} [kN] 5,52 6,16 γ _{Ms} [-] 1,23 1,23 N _{Rk,p} [kN] 2,5 N _{Rk,p} [kN] 1,2 γ _{Mc} [-] N _{Rk,p} [kN] 1,5 N _{Rk,p} [kN] 1,5 N _{Rk,p} [kN] 0,75 N _{Rk,p} (kN] 0	Galvan. Stainless steel A4 A4-70	Galvan. Stainless steel Galvan. Steel A4 A4-70 Steel	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Concrete cone failure and concrete edge failure for single anchor and anchor group

Tension load⁴⁾

$$N_{\text{Rk,c}} = 7,2 \cdot \sqrt{f_{\text{ck,cube}}} \cdot h_{\text{ef}}^{1,5} \cdot \frac{c}{c_{\text{cr,N}}} = N_{\text{Rk,p}} \cdot \frac{c}{c_{\text{cr,N}}}$$

with:
$$h_{\text{ef}}^{\text{1,5}} = \frac{N_{\text{Rk,p}}}{7,2 \cdot \sqrt{f_{\text{ck,cube}}}} \; , \label{eq:heff}$$

$$\frac{c}{c_{crN}} \le 1$$

Shear load⁴⁾

$$V_{\text{Rk,c}} = 0,45 \sqrt{d_{\text{nom}}} \cdot \left(\frac{h_{\text{nom}}}{d_{\text{nom}}}\right)^{0,2} \cdot \sqrt{f_{\text{ck,cube}}} \times c_1^{1,5} \times 0,5 \times \sqrt{\frac{c_2}{1,5\,c_1}} \cdot \sqrt{\frac{h}{1,5\,c_1}}$$

with:
$$\sqrt{\frac{c_2}{1.5 c_1}} \le 1$$

$$\sqrt{\frac{h}{1.5 c_*}} \leq 1$$

c₁ edge distance closest to the edge in loading direction

c₂ edge distance perpendicular to direction 1

f_{ck,cube} nominal characteristic concrete compression strength (based on cubes), values for C50/60 at maximum

Partial safety factor	VMa 1)	[-]	1.8

In absence of other national regulations

FM-X5

Performance

Annex C2

Characteristic resistance in concrete (use category A)

²⁾ Maximum long term temperature

³⁾ Maximum short term temperature

⁴⁾ The design method according to ETAG 020, Annex C is to be used

Base material solid masonry: Solid brick

Table C4: Brick data

Description of brick			
Type of brick			Solid brick
Bulk density	ρ≥	[kg/dm ³]	1,8
Standard			EN 771-1
Format (measurement)		[mm]	≥ 250/120/55
Minimum thickness of member	h _{min}	[mm]	120

Table C5: Installation parameters

Anchor size			FM-X5 8	FM-X5 10
Drill hole diameter	d ₀ =	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of drill hole to deepest point	h ₁ ≥	[mm]	80	
Drill method		[-]	Hammer drilling	
Overal plastic embedment depth	h _{nom} =	[mm]	70	
Diameter of clearance hole in the fixture	d _f	[mm]	8,5	10,5

Table C6: Characteristic resistance $F_{Rk}^{(1)}$ for single anchor

Anchor size		1.200	FM-X5 8	FM-X5 10
Solid clay brick f _b ≥ 43,77 MPa	24°C ³⁾ /40°C ⁴⁾	[kN]	3,5	3,5
Characteristic resistance F _{Rk}	50°C ³⁾ /80°C ⁴⁾	[kN]	2,0	2,5
Partial safety factor	γ _{Mm} 2)	[-]	2	,5

Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to Annex B1.

FM-X5

Performance

Characteristic resistance in solid brick (use category B)

Annex C3

E-00559/19

²⁾ IN absence of other national regulations

³⁾ Maximum long term temperature

⁴⁾ Maximum short term temperature

Base material hollow masonry: Hollow clay brick - Bimattone

Table C7: Brick data

Description of brick				
Type of brick			Hollow clay brick -Bimattone	
Bulk density	ρ≥	[kg/dm ³]	0,9	
Standard			EN 771-1	
Producer of brick			Fornaci Giuliane S.p.a 34071 Cormons (Go) Italy	
Format (measurement)		[mm]	≥ 250/120/120	
Minimum thickness of member	h _{min}	[mm]	120	

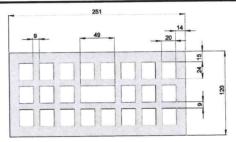


Table C8: Installation parameters

Anchor size			FM-X5 8	FM-X5 10
Drill hole diameter	d ₀ =	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of drill hole to deepest point	h ₁ ≥	[mm]	80	
Drill method		[-]	Rotary	drilling
Overal plastic embedment depth	h _{nom} =	[mm]	7	0
Diameter of clearance hole in the fixture	df	[mm]	8,5	10,5

Table C9: Characteristic resistance $F_{Rk}^{\ \ 1)}$ for single anchor

Anchor si	ize		FM-X5 8	FM-X5 10
Hollow brick - Bimattone f _b ≥ 27,3 MPa	24°C ³⁾ /40°C ⁴⁾	[kN]	1,5	1,5
Characteristic resistance F _{Rk}	50°C ³⁾ /80°C ⁴⁾	[kN]	0,9	1,2
Partial safety factor	γ _{Mm} 2)	[-]	2	,5

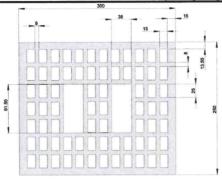
Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to Annex B1.

FM-X5

Performance

Characteristic resistance in hollow clay brick - Bimattone (use category C)

²⁾ IN absence of other national regulations


³⁾ Maximum long term temperature

⁴⁾ Maximum short term temperature

Base material hollow masonry: Hollow clay brick - Alveolater svizzero pesante

Table C10: Brick data

Description of brick					
Type of brick			Hollow clay brick Alveolater svizzero pesante		
Bulk density	ρ≥	[kg/dm ³]	0,9		
Standard			EN 771-1		
Producer of brick			Fornaci Giuliane S.p.a 34071 Cormons (Go) Italy		
Format (measurement)		[mm]	≥ 300/250/190		
Minimum thickness of member	h _{min}	[mm]	250		

Table C11: Installation parameters

Anchor size			FM-X5 8	FM-X5 10
Drill hole diameter	d ₀ =	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of drill hole to deepest point	h ₁ ≥	[mm]	80	
Drill method		[-]	Rotary	drilling
Overal plastic embedment depth	h _{nom} =	[mm]	70	
Diameter of clearance hole in the fixture	d _f	[mm]	8,5	10,5

Table C12: Characteristic resistance $F_{Rk}^{\ \ 1)}$ for single anchor

Anchor s	ize		FM-X5 8	FM-X5 10
Hollow brick - Alveolater svizzero	24°C ³⁾ /40°C ⁴⁾	[kN]	1,5	1,5
pesante $f_b \ge 13,83$ MPa Characteristic resistance F_{Rk}	50°C ³⁾ /80°C ⁴⁾	[kN]	0,6	1,2
Partial safety factor	γ _{Mm} ²⁾	[-]	2	,5

The Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to Annex B1.

FM-X5

Performance

Characteristic resistance in hollow clay brick -Alveolater svizzero pesante (use category C)

Annex C5

T LJUBLJAE Q0559/19

²⁾ IN absence of other national regulations

Maximum long term temperature

⁴⁾ Maximum short term temperature

Base material hollow masonry: Hollow clay brick - Alveolater incastro 35

Table C13: Brick data

Description of brick						
Type of brick			Hollow clay brick Alveolater incastro 35			
Bulk density	ρ≥	[kg/dm ³]	0,8			
Standard			EN 771-1			
Producer of brick			Fornaci Giuliane S.p.a 34071 Cormons (Go) Italy			
Format (measurement)		[mm]	≥ 350/240/245			
Minimum thickness of member	h _{min}	[mm]	350			

Table C14: Installation parameters

Anchor size			FM-X5 8	FM-X5 10
Drill hole diameter	d ₀ =	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of drill hole to deepest point	h ₁ ≥	[mm]	80	
Drill method		[-]	Rotary drilling	
Overal plastic embedment depth	h _{nom} =	[mm]	70	
Diameter of clearance hole in the fixture	d _f	[mm]	8,5	10,5

Table C15: Characteristic resistance $F_{Rk}^{\ \ 1)}$ for single anchor

Anchor siz	ze		FM-X5 8	FM-X5 10
Hollow brick - Alveolater incastro 35	24°C ³⁾ /40°C ⁴⁾	[kN]	1,5	1,5
f _b ≥ 10,93 MPa	50°C ³⁾ /80°C ⁴⁾	[kN]	0.75	1.2
Characteristic resistance F _{Rk}	30 0 700 0	[KI 4]	0,10	-,-
Partial safety factor	γ _{Mm} ²⁾	[-]	2	2,5

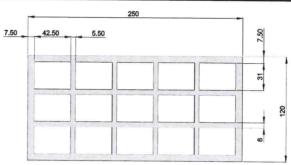
Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to chapter Annex B1.

FM-X5

Performance

Characteristic resistance in hollow clay brick -Alveolater incastro 35 (use category C)

²⁾ IN absence of other national regulations


³⁾ Maximum long term temperature

⁴⁾ Maximum short term temperature

Base material hollow masonry: Hollow clay brick - Blocco leggero

Table C16 Brick data

Description of brick					
Type of brick			Hollow clay brick Blocco leggero		
Bulk density	ρ≥	[kg/dm ³]	0.5		
Standard			EN 771-1		
Producer of brick			Wienerberger Brunori SRL Burbano di Modano (Bo) Italy		
Format (measurement)		[mm]	≥ 250/120/500		
Minimum thickness of member	h _{min}	[mm]	120		

Table C17: Installation parameters

Anchor size			FM-X5 8	FM-X5 10
Drill hole diameter	d ₀ =	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of drill hole to deepest point	h ₁ ≥	[mm]	80	
Drill method		[-]	Rotary drilling	
Overal plastic embedment depth	h _{nom} =	[mm]	70	
Diameter of clearance hole in the fixture	d _f	[mm]	8,5	10.5

Table C18: Characteristic resistance F_{Rk}¹⁾ for single anchor

Anchor size			FM-X5 8	FM-X5 10
Hollow brick - Blocco leggero f _b ≥ 7 MPa	24°C ³⁾ /40°C ⁴⁾	[kN]	0,9	0,9
Characteristic resistance F _{Rk}	50°C ³⁾ /80°C ⁴⁾	[kN]	0,4	0.6
Partial safety factor	γ _{Mm} ²⁾	[-]	2	2,5

Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to Annex B1.

FM-X5

Performance

Characteristic resistance in hollow clay brick -Blocco leggero (use category C)

²⁾ IN absence of other national regulations

³⁾ Maximum long term temperature

⁴⁾ Maximum short term temperature

Base material hollow masonry: Hollow clay brick - Poroton

Table C19: Brick data

Description of brick			
Type of brick			Hollow clay brick - Poroton
Bulk density	ρ≥	[kg/dm ³]	0,9
Standard			EN 771-1
Producer of brick			Fornaci di Manzano S.p.a 33044 Manzano (Ud) Italy
Format (measurement)		[mm]	≥ 250/300/190
Minimum thickness of member	h _{min}	[mm]	250

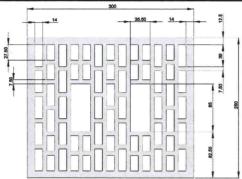


Table C20: Installation parameters

Anchor size			FM-X5 8	FM-X5 10	
Drill hole diameter	d ₀	[mm]	10	10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10,45	10,45	
Depth of drill hole to deepest point	h ₁ ≥	[mm]		80	
Drill method		[-]	Rotan	drilling	
Overal plastic embedment depth	h _{nom} =	[mm]	70		
Diameter of clearance hole in the fixture	d _f	[mm]	10,5	10,5	

Table C21: Characteristic resistance $F_{Rk}^{(1)}$ for single anchor

Anchor s	ize		FM-X5 8	FM-X5 10
Hollow brick - Poroton f _b ≥ 22 MPa	24°C ³⁾ /40°C ⁴⁾	[kN]	1,5	2,0
Characteristic resistance F _{Rk}	50°C ³⁾ /80°C ⁴⁾	[kN]	0,9	1,2
Partial safety factor	γ _{Mm} ²⁾	[-]	2	2,5

¹⁾ Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to Annex B1.

2) IN absence of other national regulations

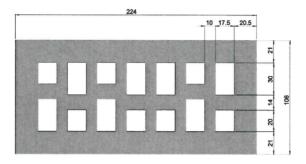
FM-X5

Performance

Characteristic resistance in hollow clay brick -**Poroton** (use category C)

Annex C8

E-00559/19


³⁾ Maximum long term temperature

⁴⁾ Maximum short term temperature

Base material hollow masonry: Hollow clay brick Leopard Brique Perforèe category 1-HD

Table C22: Brick data

Description of brick			
Type of brick			Hollow clay brick - Leopard BP category 1-HD
Bulk density	ρ≥	[kg/m ³]	1,3
Standard			EN 771-1
Producer of brick			Pacema Groupe Wienerberge F- 67087 Strasbourg
Format (measurement)		[mm]	≥ 220/120/54
Minimum thickness of member	h _{min}	[mm]	120

Table C23: Installation parameters

Anchor size			FM-X5 8	FM-X5 10
Drill hole diameter	d ₀	[mm]	10	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10,45	10,45
Depth of drill hole to deepest point	h ₁ ≥	[mm]	80	
Drill method		[-]	Rotary drilling	
Overal plastic embedment depth	h _{nom} =	[mm]	70	
Diameter of clearance hole in the fixture	df	[mm]	10,5	10,5

Table C24: Characteristic resistance $F_{Rk}^{(1)}$ for single anchor

Anchor size	I have been been		FM-X5 8	FM-X5 10
Hollow clay brick - Leopard BP category	24°C ³⁾ /40°C ⁴⁾	[kN]	2,0	1,5
THD f _b ≥ 30 MPa Characteristic resistance F _{Rk}	50°C ³⁾ /80°C ⁴⁾	[kN]	0,9	0,9
Partial safety factor	γ _{Mm} 2)	[-]		2.5

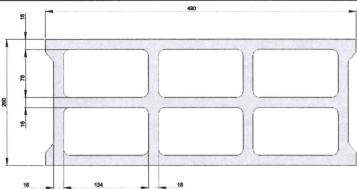
Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to Annex B1.

FM-X5

Performance

Characteristic resistance in hollow clay brick -Brique Perforèe category 1-HD (use category C)

²⁾ IN absence of other national regulations


³⁾ Maximum long term temperature

⁴⁾ Maximum short term temperature

Base material hollow masonry: Blocks creux granulate en beton allege

Table C25: Brick data

Description of brick	16.4.		
Type of brick			Hollow brick light weight concrete BC 203 n°26
Bulk density	ρ≥	[kg/dm ³]	0,95
Standard			EN 771-3
Producer of brick			Carayon F-11590 Salleled d'Aude
Format (measurement)		[mm]	≥ 490/200/190
Minimum thickness of member	h _{min}	[mm]	200

Table C26: Installation parameters

Anchor size			FM-X5 8	FM-X5 10
Drill hole diameter	d ₀	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of drill hole to deepest point	h ₁ ≥	[mm]	80	
Drill method		[-]	Rotary drilling	
Overal plastic embedment depth	h _{nom} =	[mm]	70	
Diameter of clearance hole in the fixture	df	[mm]	8,5	10,5

Table C27: Characteristic resistance F_{Rk}¹⁾ for single anchor

Anchor	size		FM-X5 8	FM-X5 10
Hollow brick BC 203 n°26 f _b ≥ 4 MPa	24°C ³⁾ /40°C ⁴⁾	[kN]	0,75	0,6
Characteristic resistance F _{Rk}	50°C ³⁾ /80°C ⁴⁾	[kN]	0,3	0,6
Partial safety factor	γ _{Mm} ²⁾	[-]	2,5	

¹⁾ Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to Annex B1.

FM-X5

Performance

Characteristic resistance in hollow brick -Blocks creux granulate en beton allege (use category C) **Annex C10**

LJUBLJANA 600559/19

²⁾ In absence of other national regulations

³⁾ Maximum long term temperature

⁴⁾ Maximum short term temperature

Base material: Autoclaved Aerated Concrete

Table C28: Brick data

Description of brick	14-15-1		
Type of brick			Autoclaved aerated concrete
Bulk density	ρ≥	[kg/dm ³]	0,5
Standard			EN 771-4
Producer of brick			RDB Hebel S.p.A., Pontenure, Italia
Format (measurement)		[mm]	≥ 625/250/200
Minimum thickness of member	h _{min}	[mm]	200

Table C29: Installation parameters

Anchor size	FM-X5 8	FM-X5 10		
Drill hole diameter	d ₀	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of drill hole to deepest point	h ₁ ≥	[mm]	80	
Drill method		[-]	Hammer drilling	
Overal plastic embedment depth	h _{nom} =	[mm]	70	
Diameter of clearance hole in the fixture	d _f	[mm]	8,5	10,5

Table C30: Characteristic resistance $F_{Rk}^{\ \ 1)}$ for single anchor

Anchor size	700 E. B.	FM-X5 8	FM-X5 10	
Autoclaved Aerated Concrete AAC f _b ≥	24°C ³⁾ /40°C ⁴⁾	[kN]	0,6	0,6
2,5 MPa Characteristic resistance F _{Rk}	50°C ³⁾ /80°C ⁴⁾	[kN]	0,6	0,5
Partial safety factor	γ _{Mm} ²⁾	[-]	2	2,0

Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table B3. The specific conditions for the design method have to be considered according to Annex B1.

2) In absence of other national regulations

FM-X5

Performance

Characteristic resistance in Autoclaved Aerated Concrete (use category D)

³⁾ Maximum long term temperature

⁴⁾ Maximum short term temperature

Table C31: Displacements under tension and shear loading in concrete

	J	ension loa	ad	Shear load			
Concrete ≥ C 16/20	F	δ_{N0}	δ _{N∞}	F	δ_{V0}	δ _{V∞}	
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	
FM-X5 8	1,0	3,76	7,52	1,0	1,60	2,40	
FM-X5 10	1,4	1,79	3,58	1,4	0,90	1,35	

Table C32: Displacements under tension and shear loading in masonry

			Displa	cement			Displacement				
Base material	F	Tensio	on load	Shea	r load	F	Tensio	Tension load		r load	
Dasc material		δ_{N0}	δ _{N∞}	δ_{V0}	δ _{V∞}		δ _{V∞}	δ _{V∞}	δ _{V∞}	δ _{V∞}	
	[kN]	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[mm]	[mm]	[mm]	
		FM-X5 8				FM-X5 10					
Solid clay brick	0,86	1,74	3,48	0,71	1,10	1,00	2,40	4,80	0,83	1,25	
Hollow clay brick - bimattone	0,43	1,81	3,62	0,86	1,29	0,43	1,70	3,40	0,86	1,29	
Hollow clay brick – alveolater svizzero pesante	0,43	1,00	2,00	0,86	1,29	0,43	0,89	1,78	0,86	1,29	
Hollow clay brick – alveolater 35	0,43	1,51	3,02	0,86	1,29	0,43	1,65	3,30	0,86	1,29	
Hollow clay brick – blocco leggero	0,26	1,71	3,42	0,52	0,78	0,26	1,05	2,10	0,52	0,78	
Hollow clay brick – poroton	0,43	1,80	3,60	0,86	1,29	0,57	1,61	3,22	0,86	1,29	
Hollow clay brick – BP category 1 - HD	0,57	0,83	1,66	1,14	1,71	0,43	0,95	1,90	1,14	1,71	
Hollow brick – light weight concrete – BC 203	0,21	2,32	4,64	1,00	1,50	0,17	1,59	3,18	0,34	0,51	

Table C33: Displacements under tension and shear loading in Autoclaved Aerated Concrete

		Tension loa	d	Shear load			
AAC 2	F	δ_{N0}	δ _{N∞}	F	δ_{V0}	δ _{V∞}	
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	
FM-X5 8	0,21	0,94	1,88	0,18	1,00	1,50	
FM-X5 10	0,21	1,88	3,76	0,27	1,50	2,25	

Performance Annex C12

Displacements in concrete and masonry

D LJUBLJANA 17 E-00559/19